Source code for biogeme.expressions.logzero

"""Arithmetic expressions accepted by Biogeme: logzero

Michel Bierlaire
Sat Jun 28 2025, 12:17:05
"""

from __future__ import annotations

import logging

import jax
import jax.numpy as jnp
import numpy as np
from biogeme.floating_point import EPSILON, JAX_FLOAT

from .base_expressions import ExpressionOrNumeric
from .jax_utils import JaxFunctionType
from .unary_expressions import UnaryOperator

logger = logging.getLogger(__name__)


[docs] class logzero(UnaryOperator): """ logarithm expression. Returns zero if the argument is zero. """ def __init__(self, child: ExpressionOrNumeric): """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression """ super().__init__(child)
[docs] def deep_flat_copy(self) -> logzero: """Provides a copy of the expression. It is deep in the sense that it generates copies of the children. It is flat in the sense that any `MultipleExpression` is transformed into the currently selected expression. The flat part is irrelevant for this expression. """ copy_child = self.child.deep_flat_copy() return type(self)(child=copy_child)
def __str__(self) -> str: return f'logzero({self.child})' def __repr__(self) -> str: return f'logzero({repr(self.child)})'
[docs] def get_value(self) -> float: """Evaluates the value of the expression :return: value of the expression :rtype: float """ v = self.child.get_value() return 0 if v == 0 else np.log(v)
[docs] def recursive_construct_jax_function( self, numerically_safe: bool ) -> JaxFunctionType: """ Generates a function to be used by biogeme_jax. Must be overloaded by each expression :return: the function takes two parameters: the parameters, and one row of the database. """ child_jax = self.child.recursive_construct_jax_function( numerically_safe=numerically_safe ) if numerically_safe: def the_jax_function( parameters: jnp.ndarray, one_row: jnp.ndarray, the_draws: jnp.ndarray, the_random_variables: jnp.ndarray, ) -> jnp.ndarray: child_value = child_jax( parameters, one_row, the_draws, the_random_variables ) is_zero = child_value == 0.0 slope = 1.0 / EPSILON intercept = jnp.log(EPSILON) - slope * EPSILON approx_log = slope * child_value + intercept return jax.lax.cond( is_zero, lambda _: jnp.array(0.0, dtype=JAX_FLOAT), lambda _: jax.lax.cond( child_value < EPSILON, lambda _: approx_log, lambda _: jnp.log(child_value), operand=None, ), operand=None, ) return the_jax_function def the_jax_function( parameters: jnp.ndarray, one_row: jnp.ndarray, the_draws: jnp.ndarray, the_random_variables: jnp.ndarray, ) -> jnp.ndarray: child_value = child_jax( parameters, one_row, the_draws, the_random_variables ) is_zero = child_value == 0.0 return jax.lax.cond( is_zero, lambda _: jnp.array(0.0, dtype=JAX_FLOAT), lambda _: jnp.log(child_value), operand=None, ) return the_jax_function