Calculation of willingness to pay

We calculate and plot willingness to pay. Details about this example are available in Section 4 of Bierlaire (2018) Calculating indicators with PandasBiogeme

Michel Bierlaire, EPFL Sat Jun 28 2025, 21:00:12

import sys

import numpy as np
import pandas as pd
from IPython.core.display_functions import display
from biogeme.biogeme import BIOGEME
from biogeme.results_processing import EstimationResults

try:
    import matplotlib.pyplot as plt

    can_plot = True
except ModuleNotFoundError:
    can_plot = False
from biogeme.expressions import Derive
from biogeme.data.optima import read_data, normalized_weight
from scenarios import scenario

Obtain the specification for the default scenario The definition of the scenarios is available in Specification of a nested logit model.

v, _, _, _ = scenario()

v_pt = v[0]
v_car = v[1]

Calculation of the willingness to pay using derivatives.

wtp_pt_time = Derive(v_pt, 'TimePT') / Derive(v_pt, 'MarginalCostPT')
wtp_car_time = Derive(v_car, 'TimeCar') / Derive(v_car, 'CostCarCHF')

Formulas to simulate.

simulate = {
    'weight': normalized_weight,
    'WTP PT time': wtp_pt_time,
    'WTP CAR time': wtp_car_time,
}

Read the data

database = read_data()

Create the Biogeme object.

the_biogeme = BIOGEME(database, simulate)

Read the estimation results from the file.

try:
    results = EstimationResults.from_yaml_file(
        filename='saved_results/b02estimation.yaml'
    )
except FileNotFoundError:
    sys.exit(
        'Run first the script b02estimation.py in order to generate '
        'the file b02estimation.yaml.'
    )

simulated_values is a Pandas dataframe with the same number of rows as the database, and as many columns as formulas to simulate.

simulated_values = the_biogeme.simulate(results.get_beta_values())
display(simulated_values)
        weight  WTP PT time  WTP CAR time
0     0.893779     0.038447      0.038447
1     0.868674     0.038447      0.038447
2     0.868674     0.038447      0.038447
3     0.965766     0.111038      0.111038
4     0.868674     0.038447      0.038447
...        ...          ...           ...
1894  2.053830     0.038447      0.038447
1895  0.868674     0.111038      0.111038
1896  0.868674     0.111038      0.111038
1897  0.965766     0.038447      0.038447
1898  0.965766     0.038447      0.038447

[1899 rows x 3 columns]

Note the multiplication by 60 to have the valus of time per hour and not per minute.

wtpcar = (60 * simulated_values['WTP CAR time'] * simulated_values['weight']).mean()

Calculate confidence intervals

b = results.get_betas_for_sensitivity_analysis()

Returns data frame containing, for each simulated value, the left and right bounds of the confidence interval calculated by simulation.

left, right = the_biogeme.confidence_intervals(b, 0.9)
  0%|          | 0/100 [00:00<?, ?it/s]
  2%|▏         | 2/100 [00:00<00:07, 13.84it/s]
  4%|▍         | 4/100 [00:00<00:06, 13.90it/s]
  6%|▌         | 6/100 [00:00<00:06, 13.97it/s]
  8%|▊         | 8/100 [00:00<00:06, 13.66it/s]
 10%|█         | 10/100 [00:00<00:06, 13.79it/s]
 12%|█▏        | 12/100 [00:00<00:06, 13.74it/s]
 14%|█▍        | 14/100 [00:01<00:06, 13.57it/s]
 16%|█▌        | 16/100 [00:01<00:06, 13.66it/s]
 18%|█▊        | 18/100 [00:01<00:05, 13.80it/s]
 20%|██        | 20/100 [00:01<00:05, 13.62it/s]
 22%|██▏       | 22/100 [00:01<00:05, 13.71it/s]
 24%|██▍       | 24/100 [00:01<00:05, 13.82it/s]
 26%|██▌       | 26/100 [00:01<00:05, 13.61it/s]
 28%|██▊       | 28/100 [00:02<00:05, 13.62it/s]
 30%|███       | 30/100 [00:02<00:05, 13.67it/s]
 32%|███▏      | 32/100 [00:02<00:05, 13.49it/s]
 34%|███▍      | 34/100 [00:02<00:04, 13.54it/s]
 36%|███▌      | 36/100 [00:02<00:04, 13.59it/s]
 38%|███▊      | 38/100 [00:02<00:04, 13.44it/s]
 40%|████      | 40/100 [00:02<00:04, 13.60it/s]
 42%|████▏     | 42/100 [00:03<00:04, 13.69it/s]
 44%|████▍     | 44/100 [00:03<00:04, 13.60it/s]
 46%|████▌     | 46/100 [00:03<00:03, 13.77it/s]
 48%|████▊     | 48/100 [00:03<00:03, 13.84it/s]
 50%|█████     | 50/100 [00:03<00:03, 13.70it/s]
 52%|█████▏    | 52/100 [00:03<00:03, 13.79it/s]
 54%|█████▍    | 54/100 [00:03<00:03, 13.84it/s]
 56%|█████▌    | 56/100 [00:04<00:03, 13.66it/s]
 58%|█████▊    | 58/100 [00:04<00:03, 13.71it/s]
 60%|██████    | 60/100 [00:04<00:02, 13.77it/s]
 62%|██████▏   | 62/100 [00:04<00:02, 13.63it/s]
 64%|██████▍   | 64/100 [00:04<00:02, 13.72it/s]
 66%|██████▌   | 66/100 [00:04<00:02, 13.76it/s]
 68%|██████▊   | 68/100 [00:04<00:02, 13.61it/s]
 70%|███████   | 70/100 [00:05<00:02, 13.71it/s]
 72%|███████▏  | 72/100 [00:05<00:02, 13.78it/s]
 74%|███████▍  | 74/100 [00:05<00:01, 13.58it/s]
 76%|███████▌  | 76/100 [00:05<00:01, 13.68it/s]
 78%|███████▊  | 78/100 [00:05<00:01, 13.78it/s]
 80%|████████  | 80/100 [00:05<00:01, 13.65it/s]
 82%|████████▏ | 82/100 [00:05<00:01, 13.73it/s]
 84%|████████▍ | 84/100 [00:06<00:01, 13.82it/s]
 86%|████████▌ | 86/100 [00:06<00:01, 13.69it/s]
 88%|████████▊ | 88/100 [00:06<00:00, 13.82it/s]
 90%|█████████ | 90/100 [00:06<00:00, 13.89it/s]
 92%|█████████▏| 92/100 [00:06<00:00, 13.71it/s]
 94%|█████████▍| 94/100 [00:06<00:00, 13.77it/s]
 96%|█████████▌| 96/100 [00:07<00:00, 13.86it/s]
 98%|█████████▊| 98/100 [00:07<00:00, 13.73it/s]
100%|██████████| 100/100 [00:07<00:00, 13.80it/s]
100%|██████████| 100/100 [00:07<00:00, 13.71it/s]

Lower bounds of the confidence intervals

display(left)
        weight  WTP PT time  WTP CAR time
0     0.893779     0.011250      0.011250
1     0.868674     0.011250      0.011250
2     0.868674     0.011250      0.011250
3     0.965766     0.067402      0.067402
4     0.868674     0.011250      0.011250
...        ...          ...           ...
1894  2.053830     0.011250      0.011250
1895  0.868674     0.067402      0.067402
1896  0.868674     0.067402      0.067402
1897  0.965766     0.011250      0.011250
1898  0.965766     0.011250      0.011250

[1899 rows x 3 columns]

Upper bounds of the confidence intervals

display(right)
        weight  WTP PT time  WTP CAR time
0     0.893779     0.083276      0.083276
1     0.868674     0.083276      0.083276
2     0.868674     0.083276      0.083276
3     0.965766     0.195056      0.195056
4     0.868674     0.083276      0.083276
...        ...          ...           ...
1894  2.053830     0.083276      0.083276
1895  0.868674     0.195056      0.195056
1896  0.868674     0.195056      0.195056
1897  0.965766     0.083276      0.083276
1898  0.965766     0.083276      0.083276

[1899 rows x 3 columns]

Lower and upper bounds of the willingness to pay.

wtpcar_left = (60 * left['WTP CAR time'] * left['weight']).mean()
wtpcar_right = (60 * right['WTP CAR time'] * right['weight']).mean()
print(
    f'Average WTP for car: {wtpcar:.3g} ' f'CI:[{wtpcar_left:.3g}, {wtpcar_right:.3g}]'
)
Average WTP for car: 3.89 CI:[1.9, 7.44]

In this specific case, there are only two distinct values in the population: for workers and non workers

print(
    'Unique values:      ',
    [f'{i:.3g}' for i in 60 * simulated_values['WTP CAR time'].unique()],
)
Unique values:       ['2.31', '6.66']

Function calculating the willingness to pay for a group.

def wtp_for_subgroup(the_filter: 'pd.Series[np.bool_]') -> tuple[float, float, float]:
    """
    Check the value for groups of the population. Define a function that
    works for any filter to avoid repeating code.

    :param the_filter: pandas filter

    :return: willingness-to-pay for car and confidence interval
    """
    size = the_filter.sum()
    sim = simulated_values[the_filter]
    total_weight = sim['weight'].sum()
    weight = sim['weight'] * size / total_weight
    _wtpcar = (60 * sim['WTP CAR time'] * weight).mean()
    _wtpcar_left = (60 * left[the_filter]['WTP CAR time'] * weight).mean()
    _wtpcar_right = (60 * right[the_filter]['WTP CAR time'] * weight).mean()
    return _wtpcar, _wtpcar_left, _wtpcar_right

Full time workers.

a_filter = database.dataframe['OccupStat'] == 1
w, l, r = wtp_for_subgroup(a_filter)
print(f'WTP car for workers: {w:.3g} CI:[{l:.3g}, {r:.3g}]')
WTP car for workers: 6.66 CI:[4.04, 11.7]

Females.

a_filter = database.dataframe['Gender'] == 2
w, l, r = wtp_for_subgroup(a_filter)
print(f'WTP car for females: {w:.3g} CI:[{l:.3g}, {r:.3g}]')
WTP car for females: 3.09 CI:[1.28, 6.21]

Males.

a_filter = database.dataframe['Gender'] == 1
w, l, r = wtp_for_subgroup(a_filter)
print(f'WTP car for males  : {w:.3g} CI:[{l:.3g}, {r:.3g}]')
WTP car for males  : 4.89 CI:[2.67, 8.98]

We plot the distribution of WTP in the population. In this case, there are only two values

if can_plot:
    plt.hist(
        60 * simulated_values['WTP CAR time'],
        weights=simulated_values['weight'],
    )
    plt.xlabel('WTP (CHF/hour)')
    plt.ylabel('Individuals')
    plt.show()
plot b09wtp

Total running time of the script: (0 minutes 8.147 seconds)

Gallery generated by Sphinx-Gallery