24. Mixture of logit with Halton drawsΒΆ

Example of a mixture of logit models, using quasi Monte-Carlo integration with Halton draws (base 5). The mixing distribution is normal.

Michel Bierlaire, EPFL Sat Jun 28 2025, 12:45:21

from IPython.core.display_functions import display

import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, Draws, MonteCarlo, log
from biogeme.models import logit
from biogeme.results_processing import (
    EstimationResults,
    get_pandas_estimated_parameters,
)

See the data processing script: Data preparation for Swissmetro.

from swissmetro_data import (
    CAR_AV_SP,
    CAR_CO_SCALED,
    CAR_TT_SCALED,
    CHOICE,
    SM_AV,
    SM_COST_SCALED,
    SM_TT_SCALED,
    TRAIN_AV_SP,
    TRAIN_COST_SCALED,
    TRAIN_TT_SCALED,
    database,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b24_halton_mixture.py')
Example b24_halton_mixture.py

Parameters to be estimated.

asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)

Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation.

b_time = Beta('b_time', 0, None, None, 0)

It is advised not to use 0 as starting value for the following parameter.

b_time_s = Beta('b_time_s', 1, None, None, 0)

Define a random parameter with a normal distribution, designed to be used for quasi Monte-Carlo simulation with Halton draws (base 5).

b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'NORMAL_HALTON5')

Definition of the utility functions.

v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

v = {1: v_train, 2: v_swissmetro, 3: v_car}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Conditional on b_time_rnd, we have a logit model (called the kernel)

conditional_probability = logit(v, av, CHOICE)

We integrate over b_time_rnd using Monte-Carlo.

log_probability = log(MonteCarlo(conditional_probability))

These notes will be included as such in the report file.

USER_NOTES = (
    'Example of a mixture of logit models with three alternatives, '
    'approximated using Monte-Carlo integration with Halton draws.'
)

As the objective is to illustrate the syntax, we calculate the Monte-Carlo approximation with a small number of draws.

the_biogeme = BIOGEME(
    database, log_probability, user_notes=USER_NOTES, number_of_draws=10_000, seed=1223
)
the_biogeme.model_name = 'b24_halton_mixture'
Biogeme parameters read from biogeme.toml.

Estimate the parameters.

try:
    results = EstimationResults.from_yaml_file(
        filename=f'saved_results/{the_biogeme.model_name}.yaml'
    )
except FileNotFoundError:
    results = the_biogeme.estimate()
*** Initial values of the parameters are obtained from the file __b24_halton_mixture.iter
Cannot read file __b24_halton_mixture.iter. Statement is ignored.
Starting values for the algorithm: {}
As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the algorithm from "automatic" to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Iter.       asc_train          b_time        b_time_s          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0              -1              -1               2              -1               1      6.1e+03       0.16        1     0.25    +
    1           -0.73              -2               3            -0.4               0      5.5e+03      0.049        1     0.36    +
    2           -0.95            -2.3             2.6            -1.4            0.51      5.4e+03      0.054        1     0.39    +
    3           -0.95            -2.3             2.6            -1.4            0.51      5.4e+03      0.054      0.5    -0.15    -
    4           -0.45            -2.8             2.6            -1.1          0.0057      5.3e+03       0.03      0.5      0.5    +
    5          -0.092            -2.6             2.5            -1.6            0.33      5.3e+03      0.046      0.5     0.14    +
    6          -0.092            -2.6             2.5            -1.6            0.33      5.3e+03      0.046     0.25    -0.19    -
    7           -0.34            -2.9             2.3            -1.4            0.26      5.2e+03      0.022     0.25     0.65    +
    8            -0.3            -2.6             2.2            -1.2            0.22      5.2e+03     0.0084     0.25     0.51    +
    9            -0.3            -2.6             2.2            -1.2            0.22      5.2e+03     0.0084     0.12       -3    -
   10            -0.3            -2.6             2.2            -1.2            0.22      5.2e+03     0.0084    0.062    -0.22    -
   11           -0.36            -2.6             2.1            -1.3            0.28      5.2e+03     0.0063    0.062     0.42    +
   12            -0.3            -2.6             2.1            -1.4            0.22      5.2e+03     0.0065    0.062     0.54    +
   13           -0.35            -2.6               2            -1.3            0.21      5.2e+03     0.0096    0.062     0.47    +
   14           -0.33            -2.5               2            -1.3            0.22      5.2e+03     0.0034     0.62      0.9   ++
   15           -0.33            -2.5               2            -1.3            0.22      5.2e+03     0.0034     0.31    -0.57    -
   16           -0.38            -2.3             1.7            -1.2            0.12      5.2e+03     0.0045     0.31     0.47    +
   17           -0.38            -2.3             1.7            -1.2            0.12      5.2e+03     0.0045     0.16     -3.1    -
   18           -0.38            -2.3             1.7            -1.2            0.12      5.2e+03     0.0045    0.078     -2.2    -
   19           -0.38            -2.3             1.7            -1.2            0.12      5.2e+03     0.0045    0.039    -0.99    -
   20           -0.42            -2.2             1.6            -1.3            0.15      5.2e+03     0.0034    0.039     0.21    +
   21            -0.4            -2.2             1.6            -1.3            0.12      5.2e+03     0.0018    0.039     0.18    +
   22           -0.41            -2.2             1.6            -1.3            0.13      5.2e+03    0.00021    0.039     0.77    +
   23           -0.41            -2.2             1.6            -1.3            0.13      5.2e+03    0.00021     0.02     -2.9    -
   24           -0.41            -2.2             1.6            -1.3            0.13      5.2e+03    0.00021   0.0098    -0.57    -
   25            -0.4            -2.3             1.6            -1.3            0.14      5.2e+03    0.00039   0.0098     0.24    +
   26            -0.4            -2.3             1.6            -1.3            0.14      5.2e+03    0.00039   0.0049    -0.99    -
   27            -0.4            -2.3             1.6            -1.3            0.14      5.2e+03    0.00039   0.0024    -0.33    -
   28            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    0.00018   0.0024     0.46    +
   29            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    0.00014   0.0024     0.69    +
   30            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    0.00021   0.0024     0.15    +
   31            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    0.00021   0.0012    -0.49    -
   32            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    8.1e-05   0.0012     0.39    +
   33            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    3.1e-05   0.0012     0.68    +
   34            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    2.4e-05   0.0012     0.57    +
   35            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    2.4e-05  0.00061     -1.9    -
   36            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    2.4e-05  0.00031    -0.91    -
   37            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    2.4e-05  0.00015    -0.17    -
   38            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    1.2e-05  0.00015     0.68    +
   39            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    8.1e-06  0.00015     0.74    +
   40            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    5.3e-06  0.00015     0.57    +
Optimization algorithm has converged.
Relative gradient: 5.2868161203223544e-06
Cause of termination: Relative gradient = 5.3e-06 <= 6.1e-06
Number of function evaluations: 92
Number of gradient evaluations: 51
Number of hessian evaluations: 0
Algorithm: BFGS with trust region for simple bound constraints
Number of iterations: 41
Proportion of Hessian calculation: 0/25 = 0.0%
Optimization time: 0:01:30.115353
Calculate second derivatives and BHHH
File b24_halton_mixture.html has been generated.
File b24_halton_mixture.yaml has been generated.
print(results.short_summary())
Results for model b24_halton_mixture
Nbr of parameters:              5
Sample size:                    6768
Excluded data:                  3960
Final log likelihood:           -5214.905
Akaike Information Criterion:   10439.81
Bayesian Information Criterion: 10473.91
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
        Name     Value  Robust std err.  Robust t-stat.  Robust p-value
0  asc_train -0.401952         0.065839       -6.105116    1.027262e-09
1     b_time -2.259584         0.117082      -19.299092    0.000000e+00
2   b_time_s  1.657308         0.131713       12.582698    0.000000e+00
3     b_cost -1.285299         0.086297      -14.893935    0.000000e+00
4    asc_car  0.137026         0.051721        2.649327    8.065219e-03

Total running time of the script: (3 minutes 34.189 seconds)

Gallery generated by Sphinx-Gallery