Note
Go to the end to download the full example code.
Mixtures of logit with Monte-Carlo 500 drawsΒΆ
Estimation of a mixtures of logit models where the integral is approximated using MonteCarlo integration.
Michel Bierlaire, EPFL Sun Jun 29 2025, 03:47:53
from b07estimation_specification import get_biogeme
from IPython.core.display_functions import display
import biogeme.biogeme_logging as blog
from biogeme.expressions import Draws
from biogeme.results_processing import (
EstimationResults,
get_pandas_estimated_parameters,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b07estimation_monte_carlo_500.py')
Example b07estimation_monte_carlo_500.py
R = 500
the_draws = Draws('b_time_rnd', 'NORMAL')
the_biogeme = get_biogeme(the_draws=the_draws, number_of_draws=R)
the_biogeme.model_name = 'b07estimation_monte_carlo_500'
results_file = f'saved_results/{the_biogeme.model_name}.yaml'
Biogeme parameters read from biogeme.toml.
try:
results = EstimationResults.from_yaml_file(filename=results_file)
except FileNotFoundError:
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b07estimation_monte_carlo_500
Nbr of parameters: 5
Sample size: 10719
Excluded data: 9
Final log likelihood: -8575.894
Akaike Information Criterion: 17161.79
Bayesian Information Criterion: 17198.19
Get the results in a pandas table
pandas_results = get_pandas_estimated_parameters(
estimation_results=results,
)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train -0.471849 0.047959 -9.838629 0.000000e+00
1 b_time -1.844287 0.075651 -24.378989 0.000000e+00
2 b_time_s 1.185231 0.088825 13.343403 0.000000e+00
3 b_cost -0.844821 0.057509 -14.690137 0.000000e+00
4 asc_car 0.175623 0.035151 4.996252 5.845527e-07
Total running time of the script: (0 minutes 0.255 seconds)