Note
Go to the end to download the full example code.
Estimation of mixtures of logit
Estimation of a mixtures of logit models where the integral is calculated using numerical integration.
- author:
Michel Bierlaire, EPFL
- date:
Thu Apr 13 21:03:03 2023
import biogeme.biogeme as bio
import biogeme.distributions as dist
from biogeme import models
from biogeme.expressions import Beta, RandomVariable, Integrate, log
from swissmetro import (
database,
TRAIN_TT_SCALED,
TRAIN_COST_SCALED,
SM_TT_SCALED,
SM_COST_SCALED,
CAR_TT_SCALED,
CAR_CO_SCALED,
TRAIN_AV_SP,
SM_AV,
CAR_AV_SP,
CHOICE,
)
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
ASC_SM = Beta('ASC_SM', 0, None, None, 1)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_TIME_S = Beta('B_TIME_S', 1, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)
Define a random parameter, normally distirbuted, designed to be used for Monte-Carlo simulation
omega = RandomVariable('omega')
density = dist.normalpdf(omega)
b_time_rnd = B_TIME + B_TIME_S * omega
Definition of the utility functions
v1 = ASC_TRAIN + b_time_rnd * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED
v2 = ASC_SM + b_time_rnd * SM_TT_SCALED + B_COST * SM_COST_SCALED
v3 = ASC_CAR + b_time_rnd * CAR_TT_SCALED + B_COST * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives
util = {1: v1, 2: v2, 3: v3}
Associate the availability conditions with the alternatives
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
The choice model is a logit, with availability conditions
condprob = models.logit(util, av, CHOICE)
prob = Integrate(condprob * density, 'omega')
logprob = log(prob)
the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme.modelName = '06estimation_integral'
results = the_biogeme.estimate()
print(results.short_summary())
Results for model 06estimation_integral
Nbr of parameters: 5
Sample size: 6768
Excluded data: 3960
Final log likelihood: -5214.88
Akaike Information Criterion: 10439.76
Bayesian Information Criterion: 10473.86
pandas_results = results.get_estimated_parameters()
pandas_results
Total running time of the script: (0 minutes 20.502 seconds)