Estimation of mixtures of logitΒΆ

Estimation of a mixtures of logit models where the integral is calculated using numerical integration.

Michel Bierlaire, EPFL Sat Jun 28 2025, 21:12:42

from IPython.core.display_functions import display
from swissmetro import (
    CAR_AV_SP,
    CAR_CO_SCALED,
    CAR_TT_SCALED,
    CHOICE,
    SM_AV,
    SM_COST_SCALED,
    SM_TT_SCALED,
    TRAIN_AV_SP,
    TRAIN_COST_SCALED,
    TRAIN_TT_SCALED,
    database,
)

from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, IntegrateNormal, RandomVariable, log
from biogeme.models import logit
from biogeme.results_processing import (
    EstimationResults,
    get_pandas_estimated_parameters,
)
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_time = Beta('b_time', 0, None, None, 0)
b_time_s = Beta('b_time_s', 1, None, None, 0)
b_cost = Beta('b_cost', 0, None, None, 0)

Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation

omega = RandomVariable('omega')
b_time_rnd = b_time + b_time_s * omega

Definition of the utility functions

v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives

util = {1: v_train, 2: v_swissmetro, 3: v_car}

Associate the availability conditions with the alternatives

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

The choice model is a logit, with availability conditions

cond_prob = logit(util, av, CHOICE)
prob = IntegrateNormal(cond_prob, 'omega')
log_prob = log(prob)
the_biogeme = BIOGEME(database, log_prob)
the_biogeme.model_name = '06estimation_integral'
results_file = f'saved_results/{the_biogeme.model_name}.yaml'
try:
    results = EstimationResults.from_yaml_file(filename=results_file)
except FileNotFoundError:
    results = the_biogeme.estimate()
print(results.short_summary())
Results for model 06estimation_integral
Nbr of parameters:              5
Sample size:                    6768
Excluded data:                  3960
Final log likelihood:           -5213.725
Akaike Information Criterion:   10437.45
Bayesian Information Criterion: 10471.55

Get the results in a pandas table

pandas_results = get_pandas_estimated_parameters(
    estimation_results=results,
)
display(pandas_results)
        Name     Value  Robust std err.  Robust t-stat.  Robust p-value
0  asc_train -0.395901         0.063674       -6.217619    5.047569e-10
1     b_time -2.278361         0.117234      -19.434326    0.000000e+00
2   b_time_s  1.675032         0.102317       16.370945    0.000000e+00
3     b_cost -1.288167         0.086419      -14.906055    0.000000e+00
4    asc_car  0.142821         0.051744        2.760128    5.777867e-03

Total running time of the script: (0 minutes 0.110 seconds)

Gallery generated by Sphinx-Gallery