Note
Go to the end to download the full example code.
Numerical integrationΒΆ
Calculation of a mixtures of logit models where the integral is calculated using numerical integration.
Michel Bierlaire, EPFL Sat Jun 28 2025, 21:09:58
from IPython.core.display_functions import display
from biogeme.biogeme import BIOGEME
from biogeme.expressions import IntegrateNormal, RandomVariable
from biogeme.models import logit
from swissmetro_one import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
Parameters
asc_car = 0.137
asc_train = -0.402
asc_sm = 0
b_time = -2.26
b_time_s = 1.66
b_cost = -1.29
Define a random parameter, normally distributed, designed to be used for integration
omega = RandomVariable('omega')
b_time_rnd = b_time + b_time_s * omega
Definition of the utility functions
v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives
util = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
The choice model is a logit, with availability conditions
integrand = logit(util, av, CHOICE)
numerical_integral = IntegrateNormal(integrand, 'omega')
simulate = {'Numerical': numerical_integral}
biosim = BIOGEME(database, simulate)
results = biosim.simulate(the_beta_values={})
display(results)
Numerical
0 0.63785
print('Mixture of logit - numerical integration: ', results.iloc[0]['Numerical'])
Mixture of logit - numerical integration: 0.6378498356723438
Total running time of the script: (0 minutes 0.178 seconds)