Mixtures of logit with Monte-Carlo 500 MLHS drawsΒΆ

Estimation of a mixtures of logit models where the integral is approximated using MonteCarlo integration with MLHS draws.

Michel Bierlaire, EPFL Sun Jun 29 2025, 02:12:04

from b07estimation_specification import get_biogeme
from IPython.core.display_functions import display

import biogeme.biogeme_logging as blog
from biogeme.expressions import Draws
from biogeme.results_processing import (
    EstimationResults,
    get_pandas_estimated_parameters,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b07estimation_monte_carlo_mlhs_500.py')
Example b07estimation_monte_carlo_mlhs_500.py
R = 500

the_draws = Draws('b_time_rnd', 'NORMAL_MLHS')
the_biogeme = get_biogeme(the_draws=the_draws, number_of_draws=R)
the_biogeme.model_name = 'b07estimation_monte_carlo_mlhs_500'
results_file = f'saved_results/{the_biogeme.model_name}.yaml'
Biogeme parameters read from biogeme.toml.
The number of draws (500) is low. The results may not be meaningful.
try:
    results = EstimationResults.from_yaml_file(filename=results_file)
except FileNotFoundError:
    results = the_biogeme.estimate()
print(results.short_summary())
Results for model b07estimation_monte_carlo_mlhs_500
Nbr of parameters:              5
Sample size:                    10719
Excluded data:                  9
Final log likelihood:           -8571.372
Akaike Information Criterion:   17152.74
Bayesian Information Criterion: 17189.14

Get the results in a pandas table

pandas_results = get_pandas_estimated_parameters(
    estimation_results=results,
)
display(pandas_results)
        Name     Value  Robust std err.  Robust t-stat.  Robust p-value
0  asc_train -0.468770         0.047885       -9.789412    0.000000e+00
1     b_time -1.850923         0.075345      -24.565859    0.000000e+00
2   b_time_s  1.185620         0.084081       14.100852    0.000000e+00
3     b_cost -0.845230         0.057544      -14.688316    0.000000e+00
4    asc_car  0.177747         0.035097        5.064382    4.097270e-07

Total running time of the script: (0 minutes 2.342 seconds)

Gallery generated by Sphinx-Gallery