Note
Go to the end to download the full example code.
5a. Mixture of logit models with Monte-Carlo integrationΒΆ
Example of a normal mixture of logit models, using Monte-Carlo integration.
Michel Bierlaire, EPFL Wed Jun 18 2025, 11:28:46
import biogeme.biogeme_logging as blog
from IPython.core.display_functions import display
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, Draws, MonteCarlo, log
from biogeme.models import logit
from biogeme.results_processing import (
EstimationResults,
get_pandas_estimated_parameters,
)
from biogeme.tools import timeit
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b05a_normal_mixture.py')
Example b05a_normal_mixture.py
Parameters to be estimated
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)
Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation.
b_time = Beta('b_time', 0, None, None, 0)
It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 1, None, None, 0)
b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'NORMAL')
Definition of the utility functions.
v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional to b_time_rnd, we have a logit model (called the kernel).
prob = logit(v, av, CHOICE)
We integrate over b_time_rnd using Monte-Carlo.
logprob = log(MonteCarlo(prob))
These notes will be included as such in the report file.
USER_NOTES = (
'Example of a mixture of logit models with three alternatives, '
'approximated using Monte-Carlo integration.'
)
Create the Biogeme object.
the_biogeme = BIOGEME(
database, logprob, user_notes=USER_NOTES, number_of_draws=10_000, seed=1223
)
the_biogeme.model_name = 'b05a_normal_mixture'
Biogeme parameters read from biogeme.toml.
print(f'Number of draws: {the_biogeme.number_of_draws:_}')
Number of draws: 10_000
Estimate the parameters.
try:
results = EstimationResults.from_yaml_file(
filename=f'saved_results/{the_biogeme.model_name}.yaml'
)
except FileNotFoundError:
with timeit(f'Estimate of nodel {the_biogeme.model_name}'):
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b05a_normal_mixture
Nbr of parameters: 5
Sample size: 6768
Excluded data: 3960
Final log likelihood: -5215.694
Akaike Information Criterion: 10441.39
Bayesian Information Criterion: 10475.49
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train -0.402642 0.065846 -6.114866 9.663816e-10
1 b_time -2.256833 0.117184 -19.258931 0.000000e+00
2 b_time_s 1.654339 0.131836 12.548455 0.000000e+00
3 b_cost -1.284623 0.086250 -14.894150 0.000000e+00
4 asc_car 0.136320 0.051755 2.633961 8.439514e-03
Total running time of the script: (0 minutes 0.017 seconds)