Note
Go to the end to download the full example code.
5b. Mixture of logit models with numerical integrationΒΆ
Example of a normal mixture of logit models, using numerical integration.
Michel Bierlaire, EPFL Fri Jun 20 2025, 10:25:34
from IPython.core.display_functions import display
import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, IntegrateNormal, RandomVariable, log
from biogeme.models import logit
from biogeme.results_processing import (
EstimationResults,
get_pandas_estimated_parameters,
)
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b05b_normal_mixture_integral.py')
Example b05b_normal_mixture_integral.py
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)
Define a random parameter, normally distributed, designed to be used for numerical integration.
b_time = Beta('b_time', 0, None, None, 0)
It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 1, None, None, 0)
omega = RandomVariable('omega')
b_time_rnd = b_time + b_time_s * omega
Definition of the utility functions.
v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional on omega, we have a logit model (called the kernel).
conditional_probability = logit(v, av, CHOICE)
We integrate over omega using numerical integration
log_probability = log(IntegrateNormal(conditional_probability, 'omega'))
Create the Biogeme object
the_biogeme = BIOGEME(
database,
log_probability,
optimization_algorithm='simple_bounds_BFGS',
)
# the_biogeme = BIOGEME(database, logprob)
the_biogeme.modelName = 'b05b_normal_mixture_integral'
Biogeme parameters read from biogeme.toml.
/Users/bierlair/MyFiles/github/biogeme/docs/source/examples/swissmetro/plot_b05b_normal_mixture_integral.py:90: DeprecationWarning: 'modelName' is deprecated. Please use 'model_name' instead.
the_biogeme.modelName = 'b05b_normal_mixture_integral'
Estimate the parameters.
try:
results = EstimationResults.from_yaml_file(
filename=f'saved_results/{the_biogeme.model_name}.yaml'
)
except FileNotFoundError:
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b05b_normal_mixture_integral
Nbr of parameters: 5
Sample size: 6768
Excluded data: 3960
Final log likelihood: -5213.725
Akaike Information Criterion: 10437.45
Bayesian Information Criterion: 10471.55
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train -0.395901 0.063674 -6.217619 5.047569e-10
1 b_time -2.278361 0.117234 -19.434326 0.000000e+00
2 b_time_s 1.675032 0.102317 16.370945 0.000000e+00
3 b_cost -1.288167 0.086419 -14.906055 0.000000e+00
4 asc_car 0.142821 0.051744 2.760128 5.777867e-03
Total running time of the script: (0 minutes 0.016 seconds)