Note
Go to the end to download the full example code.
Base modelΒΆ
Logit model.
Michel Bierlaire, EPFL Fri Jul 25 2025, 16:51:33
from IPython.core.display_functions import display
from biogeme.biogeme import BIOGEME
from biogeme.data.swissmetro import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
read_data,
)
from biogeme.expressions import Beta
from biogeme.models import loglogit
from biogeme.results_processing import get_pandas_estimated_parameters
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
b_time = Beta('b_time', 0, None, None, 0)
b_cost = Beta('b_cost', 0, None, None, 0)
Definition of the utility functions.
v_train = asc_train + b_time * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = b_time * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Definition of the model. This is the contribution of each observation to the log likelihood function.
log_probability = loglogit(v, av, CHOICE)
Read the data
database = read_data()
Create the Biogeme object.
the_biogeme = BIOGEME(
database, log_probability, generate_html=False, generate_yaml=False
)
the_biogeme.model_name = 'b00logit'
Calculate the null log likelihood for reporting.
the_biogeme.calculate_null_loglikelihood(av)
-11093.627345287434
Estimate the parameters
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b00logit
Nbr of parameters: 4
Sample size: 10719
Excluded data: 9
Null log likelihood: -11093.63
Final log likelihood: -8670.163
Likelihood ratio test (null): 4846.928
Rho square (null): 0.218
Rho bar square (null): 0.218
Akaike Information Criterion: 17348.33
Bayesian Information Criterion: 17377.45
Get the results in a pandas table
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train -0.652239 0.054394 -11.991022 0.000000
1 b_time -1.278941 0.065598 -19.496759 0.000000
2 b_cost -0.789790 0.050965 -15.496743 0.000000
3 asc_car 0.016228 0.037088 0.437556 0.661708
Total running time of the script: (0 minutes 1.905 seconds)