Note
Go to the end to download the full example code.
Base model
Logit model.
- author:
Michel Bierlaire, EPFL
- date:
Thu Jul 13 16:18:10 2023
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta
from IPython.core.display_functions import display
from biogeme.data.swissmetro import (
read_data,
CHOICE,
SM_AV,
CAR_AV_SP,
TRAIN_AV_SP,
TRAIN_TT_SCALED,
TRAIN_COST_SCALED,
SM_TT_SCALED,
SM_COST_SCALED,
CAR_TT_SCALED,
CAR_CO_SCALED,
)
Parameters to be estimated.
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)
Definition of the utility functions.
V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED
V2 = B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED
V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
V = {1: V1, 2: V2, 3: V3}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Definition of the model. This is the contribution of each observation to the log likelihood function.
logprob = models.loglogit(V, av, CHOICE)
Read the data
database = read_data()
Create the Biogeme object.
the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme.modelName = 'b00logit'
the_biogeme.generate_html = False
the_biogeme.generate_pickle = False
File biogeme.toml has been created
Calculate the null log likelihood for reporting.
the_biogeme.calculate_null_loglikelihood(av)
np.float64(-11093.62734528626)
Estimate the parameters
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b00logit
Nbr of parameters: 4
Sample size: 10719
Excluded data: 9
Null log likelihood: -11093.63
Final log likelihood: -8670.164
Likelihood ratio test (null): 4846.927
Rho square (null): 0.218
Rho bar square (null): 0.218
Akaike Information Criterion: 17348.33
Bayesian Information Criterion: 17377.45
Get the results in a pandas table
pandas_results = results.get_estimated_parameters()
display(pandas_results)
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR 0.015903 0.037081 0.428887 0.668006
ASC_TRAIN -0.652484 0.054375 -11.999761 0.000000
B_COST -0.789434 0.050943 -15.496572 0.000000
B_TIME -1.277788 0.065558 -19.490834 0.000000
Total running time of the script: (0 minutes 0.966 seconds)