Note
Go to the end to download the full example code.
Combination of many specifications¶
We combine the following specifications:
3 models
logit
nested logit with two nests: public and private transportation
nested logit with two nests existing and future modes
3 functional forms for the travel time variables
linear specification,
Box-Cox transform,
power series,
2 specifications for the cost coefficients:
generic
alternative specific
2 specifications for the travel time coefficients:
generic
alternative specific
4 segmentations for the constants:
not segmented
segmented by GA (yearly subscription to public transport)
segmented by luggage
segmented both by GA and luggage
3 segmentations for the time coefficients:
not segmented
segmented with first class
segmented with trip purpose
This leads to a total of 432 specifications. See Bierlaire and Ortelli (2023).
Michel Bierlaire, EPFL Fri Jul 25 2025, 09:52:30
import numpy as np
from biogeme.catalog import (
Catalog,
generic_alt_specific_catalogs,
segmentation_catalogs,
)
from biogeme.data.swissmetro import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
read_data,
)
from biogeme.expressions import Beta, Expression
from biogeme.models import boxcox, loglogit, lognested
from biogeme.nests import NestsForNestedLogit, OneNestForNestedLogit
Read the data
database = read_data()
Definition of the segmentations.
segmentation_ga = database.generate_segmentation(
variable='GA', mapping={0: 'noGA', 1: 'GA'}
)
segmentation_luggage = database.generate_segmentation(
variable='LUGGAGE', mapping={0: 'no_lugg', 1: 'one_lugg', 3: 'several_lugg'}
)
segmentation_first = database.generate_segmentation(
variable='FIRST', mapping={0: '2nd_class', 1: '1st_class'}
)
We consider two trip purposes: ‘commuters’ and anything else. We need to define a binary variable first.
database.dataframe['COMMUTERS'] = np.where(database.dataframe['PURPOSE'] == 1, 1, 0)
segmentation_purpose = database.generate_segmentation(
variable='COMMUTERS', mapping={0: 'non_commuters', 1: 'commuters'}
)
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
b_time = Beta('b_time', 0, None, None, 0)
b_cost = Beta('b_cost', 0, None, None, 0)
Parameter of the Box-Cox transform.
lambda_travel_time = Beta('lambda_travel_time', 1, -10, 10, 0)
Coefficients of the power series.
square_tt_coef = Beta('square_tt_coef', 0, None, None, 0)
cube_tt_coef = Beta('cube_tt_coef', 0, None, None, 0)
Function calculation the power series.
def power_series(the_variable: Expression) -> Expression:
"""Generate the expression of a polynomial of degree 3
:param the_variable: variable of the polynomial
"""
return (
the_variable
+ square_tt_coef * the_variable**2
+ cube_tt_coef * the_variable * the_variable**3
)
Train travel time
Linear specification.
linear_train_tt = TRAIN_TT_SCALED
Box-Cox transform.
boxcox_train_tt = boxcox(TRAIN_TT_SCALED, lambda_travel_time)
Power series.
power_train_tt = power_series(TRAIN_TT_SCALED)
Definition of the catalog.
train_tt_catalog = Catalog.from_dict(
catalog_name='train_tt_catalog',
dict_of_expressions={
'linear': linear_train_tt,
'boxcox': boxcox_train_tt,
'power': power_train_tt,
},
)
Swissmetro travel time
Linear specification.
linear_sm_tt = SM_TT_SCALED
Box-Cox transform.
boxcox_sm_tt = boxcox(SM_TT_SCALED, lambda_travel_time)
Power series.
power_sm_tt = power_series(SM_TT_SCALED)
Definition of the catalog. Note that the controller is the same as for train.
sm_tt_catalog = Catalog.from_dict(
catalog_name='sm_tt_catalog',
dict_of_expressions={
'linear': linear_sm_tt,
'boxcox': boxcox_sm_tt,
'power': power_sm_tt,
},
controlled_by=train_tt_catalog.controlled_by,
)
Car travel time
Linear specification.
linear_car_tt = CAR_TT_SCALED
Box-Cox transform.
boxcox_car_tt = boxcox(CAR_TT_SCALED, lambda_travel_time)
Power series.
power_car_tt = power_series(CAR_TT_SCALED)
Definition of the catalog. Note that the controller is the same as for train.
car_tt_catalog = Catalog.from_dict(
catalog_name='car_tt_catalog',
dict_of_expressions={
'linear': linear_car_tt,
'boxcox': boxcox_car_tt,
'power': power_car_tt,
},
controlled_by=train_tt_catalog.controlled_by,
)
Catalogs for the alternative specific constants.
asc_train_catalog, asc_car_catalog = segmentation_catalogs(
generic_name='asc',
beta_parameters=[asc_train, asc_car],
potential_segmentations=(
segmentation_ga,
segmentation_luggage,
),
maximum_number=2,
)
Catalog for the travel time coefficient.
(b_time_catalog_dict,) = generic_alt_specific_catalogs(
generic_name='b_time',
beta_parameters=[b_time],
alternatives=('train', 'swissmetro', 'car'),
potential_segmentations=(
segmentation_first,
segmentation_purpose,
),
maximum_number=1,
)
Catalog for the travel cost coefficient.
(b_cost_catalog_dict,) = generic_alt_specific_catalogs(
generic_name='b_cost',
beta_parameters=[b_cost],
alternatives=('train', 'swissmetro', 'car'),
)
Definition of the utility functions.
v_train = (
asc_train_catalog
+ b_time_catalog_dict['train'] * train_tt_catalog
+ b_cost_catalog_dict['train'] * TRAIN_COST_SCALED
)
v_swissmetro = (
b_time_catalog_dict['swissmetro'] * sm_tt_catalog
+ b_cost_catalog_dict['swissmetro'] * SM_COST_SCALED
)
v_car = (
asc_car_catalog
+ b_time_catalog_dict['car'] * car_tt_catalog
+ b_cost_catalog_dict['car'] * CAR_CO_SCALED
)
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Definition of the logit model. This is the contribution of each observation to the log likelihood function.
log_probability_logit = loglogit(v, av, CHOICE)
Nested logit model: nest with existing alternatives.
mu_existing = Beta('mu_existing', 1, 1, 10, 0)
existing = OneNestForNestedLogit(
nest_param=mu_existing, list_of_alternatives=[1, 3], name='Existing'
)
nests_existing = NestsForNestedLogit(choice_set=list(v), tuple_of_nests=(existing,))
log_probability_nested_existing = lognested(v, av, nests_existing, CHOICE)
Nested logit model: nest with public transportation alternatives.
mu_public = Beta('mu_public', 1, 1, 10, 0)
public = OneNestForNestedLogit(
nest_param=mu_public, list_of_alternatives=[1, 2], name='Public'
)
nests_public = NestsForNestedLogit(choice_set=list(v), tuple_of_nests=(public,))
log_probability_nested_public = lognested(v, av, nests_public, CHOICE)
Catalog for models.
model_catalog = Catalog.from_dict(
catalog_name='model_catalog',
dict_of_expressions={
'logit': log_probability_logit,
'nested existing': log_probability_nested_existing,
'nested public': log_probability_nested_public,
},
)