Note
Go to the end to download the full example code.
Combination of many specifications
We combine the following specifications:
3 models
logit
nested logit with two nests: public and private transportation
nested logit with two nests existing and future modes
3 functional forms for the travel time variables
linear specification,
Box-Cox transform,
power series,
2 specifications for the cost coefficients:
generic
alternative specific
2 specifications for the travel time coefficients:
generic
alternative specific
4 segmentations for the constants:
not segmented
segmented by GA (yearly subscription to public transport)
segmented by luggage
segmented both by GA and luggage
3 segmentations for the time coefficients:
not segmented
segmented with first class
segmented with trip purpose
This leads to a total of 432 specifications. See Bierlaire and Ortelli (2023).
- author:
Michel Bierlaire, EPFL
- date:
Sat Jul 15 15:40:33 2023
import numpy as np
from biogeme import models
from biogeme.expressions import Expression, Beta
from biogeme.nests import OneNestForNestedLogit, NestsForNestedLogit
from biogeme.catalog import (
Catalog,
segmentation_catalogs,
generic_alt_specific_catalogs,
)
from biogeme.data.swissmetro import (
read_data,
CHOICE,
SM_AV,
CAR_AV_SP,
TRAIN_AV_SP,
TRAIN_TT_SCALED,
TRAIN_COST_SCALED,
SM_TT_SCALED,
SM_COST_SCALED,
CAR_TT_SCALED,
CAR_CO_SCALED,
)
Read the data
database = read_data()
Definition of the segmentations.
segmentation_ga = database.generate_segmentation(
variable='GA', mapping={0: 'noGA', 1: 'GA'}
)
segmentation_luggage = database.generate_segmentation(
variable='LUGGAGE', mapping={0: 'no_lugg', 1: 'one_lugg', 3: 'several_lugg'}
)
segmentation_first = database.generate_segmentation(
variable='FIRST', mapping={0: '2nd_class', 1: '1st_class'}
)
We consider two trip purposes: ‘commuters’ and anything else. We need to define a binary variable first.
database.data['COMMUTERS'] = np.where(database.data['PURPOSE'] == 1, 1, 0)
segmentation_purpose = database.generate_segmentation(
variable='COMMUTERS', mapping={0: 'non_commuters', 1: 'commuters'}
)
Parameters to be estimated.
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)
Parameter of the Box-Cox transform.
ell_travel_time = Beta('lambda_travel_time', 1, -10, 10, 0)
Coefficients of the power series.
square_tt_coef = Beta('square_tt_coef', 0, None, None, 0)
cube_tt_coef = Beta('cube_tt_coef', 0, None, None, 0)
Function calculation the power series.
def power_series(the_variable: Expression) -> Expression:
"""Generate the expression of a polynomial of degree 3
:param the_variable: variable of the polynomial
"""
return (
the_variable
+ square_tt_coef * the_variable**2
+ cube_tt_coef * the_variable * the_variable**3
)
Train travel time
Linear specification.
linear_train_tt = TRAIN_TT_SCALED
Box-Cox transform.
boxcox_train_tt = models.boxcox(TRAIN_TT_SCALED, ell_travel_time)
Power series.
power_train_tt = power_series(TRAIN_TT_SCALED)
Definition of the catalog.
train_tt_catalog = Catalog.from_dict(
catalog_name='train_tt_catalog',
dict_of_expressions={
'linear': linear_train_tt,
'boxcox': boxcox_train_tt,
'power': power_train_tt,
},
)
Swissmetro travel time
Linear specification.
linear_sm_tt = SM_TT_SCALED
Box-Cox transform.
boxcox_sm_tt = models.boxcox(SM_TT_SCALED, ell_travel_time)
Power series.
power_sm_tt = power_series(SM_TT_SCALED)
Definition of the catalog. Note that the controller is the same as for train.
sm_tt_catalog = Catalog.from_dict(
catalog_name='sm_tt_catalog',
dict_of_expressions={
'linear': linear_sm_tt,
'boxcox': boxcox_sm_tt,
'power': power_sm_tt,
},
controlled_by=train_tt_catalog.controlled_by,
)
Car travel time
Linear specification.
linear_car_tt = CAR_TT_SCALED
Box-Cox transform.
boxcox_car_tt = models.boxcox(CAR_TT_SCALED, ell_travel_time)
Power series.
power_car_tt = power_series(CAR_TT_SCALED)
Definition of the catalog. Note that the controller is the same as for train.
car_tt_catalog = Catalog.from_dict(
catalog_name='car_tt_catalog',
dict_of_expressions={
'linear': linear_car_tt,
'boxcox': boxcox_car_tt,
'power': power_car_tt,
},
controlled_by=train_tt_catalog.controlled_by,
)
Catalogs for the alternative specific constants.
ASC_TRAIN_catalog, ASC_CAR_catalog = segmentation_catalogs(
generic_name='ASC',
beta_parameters=[ASC_TRAIN, ASC_CAR],
potential_segmentations=(
segmentation_ga,
segmentation_luggage,
),
maximum_number=2,
)
Catalog for the travel time coefficient.
(B_TIME_catalog_dict,) = generic_alt_specific_catalogs(
generic_name='B_TIME',
beta_parameters=[B_TIME],
alternatives=('TRAIN', 'SM', 'CAR'),
potential_segmentations=(
segmentation_first,
segmentation_purpose,
),
maximum_number=1,
)
Catalog for the travel cost coefficient.
(B_COST_catalog_dict,) = generic_alt_specific_catalogs(
generic_name='B_COST', beta_parameters=[B_COST], alternatives=('TRAIN', 'SM', 'CAR')
)
Definition of the utility functions.
V1 = (
ASC_TRAIN_catalog
+ B_TIME_catalog_dict['TRAIN'] * train_tt_catalog
+ B_COST_catalog_dict['TRAIN'] * TRAIN_COST_SCALED
)
V2 = (
B_TIME_catalog_dict['SM'] * sm_tt_catalog
+ B_COST_catalog_dict['SM'] * SM_COST_SCALED
)
V3 = (
ASC_CAR_catalog
+ B_TIME_catalog_dict['CAR'] * car_tt_catalog
+ B_COST_catalog_dict['CAR'] * CAR_CO_SCALED
)
Associate utility functions with the numbering of alternatives.
V = {1: V1, 2: V2, 3: V3}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Definition of the logit model. This is the contribution of each observation to the log likelihood function.
logprob_logit = models.loglogit(V, av, CHOICE)
Nested logit model: nest with existing alternatives.
mu_existing = Beta('mu_existing', 1, 1, 10, 0)
existing = OneNestForNestedLogit(
nest_param=mu_existing, list_of_alternatives=[1, 3], name='Existing'
)
nests_existing = NestsForNestedLogit(choice_set=list(V), tuple_of_nests=(existing,))
logprob_nested_existing = models.lognested(V, av, nests_existing, CHOICE)
Nested logit model: nest with public transportation alternatives.
mu_public = Beta('mu_public', 1, 1, 10, 0)
public = OneNestForNestedLogit(
nest_param=mu_public, list_of_alternatives=[1, 2], name='Public'
)
nests_public = NestsForNestedLogit(choice_set=list(V), tuple_of_nests=(public,))
logprob_nested_public = models.lognested(V, av, nests_public, CHOICE)
Catalo for models.
model_catalog = Catalog.from_dict(
catalog_name='model_catalog',
dict_of_expressions={
'logit': logprob_logit,
'nested existing': logprob_nested_existing,
'nested public': logprob_nested_public,
},
)