Catalog of nonlinear specificationsΒΆ

Investigate of nonlinear specifications for the travel time variables:

  • linear specification,

  • Box-Cox transform,

  • power series,

for a total of 3 specifications. See Bierlaire and Ortelli (2023).

Michel Bierlaire, EPFL Sun Apr 27 2025, 15:47:18

from IPython.core.display_functions import display

import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.catalog import Catalog
from biogeme.data.swissmetro import (
    CAR_AV_SP,
    CAR_CO_SCALED,
    CAR_TT_SCALED,
    CHOICE,
    SM_AV,
    SM_COST_SCALED,
    SM_TT_SCALED,
    TRAIN_AV_SP,
    TRAIN_COST_SCALED,
    TRAIN_TT_SCALED,
    read_data,
)
from biogeme.expressions import Beta, Expression
from biogeme.models import boxcox, loglogit
from biogeme.results_processing import compile_estimation_results, pareto_optimal

logger = blog.get_screen_logger(level=blog.INFO)

Parameters to be estimated.

asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
b_time = Beta('b_time', 0, None, 0, 0)
b_cost = Beta('b_cost', 0, None, 0, 0)

Non-linear specifications for the travel time.

Parameter of the Box-Cox transform.

lambda_travel_time = Beta('lambda_travel_time', 1, -10, 10, 0)

Coefficients of the power series.

square_tt_coef = Beta('square_tt_coef', 0, None, None, 0)
cube_tt_coef = Beta('cube_tt_coef', 0, None, None, 0)

Function calculation the power series.

def power_series(the_variable: Expression) -> Expression:
    """Generate the expression of a polynomial of degree 3

    :param the_variable: variable of the polynomial
    """
    return (
        the_variable
        + square_tt_coef * the_variable**2
        + cube_tt_coef * the_variable * the_variable**3
    )

Train travel time

Linear specification.

linear_train_tt = TRAIN_TT_SCALED

Box-Cox transform.

boxcox_train_tt = boxcox(TRAIN_TT_SCALED, lambda_travel_time)

Power series.

power_train_tt = power_series(TRAIN_TT_SCALED)

Definition of the catalog.

train_tt_catalog = Catalog.from_dict(
    catalog_name='train_tt_catalog',
    dict_of_expressions={
        'linear': linear_train_tt,
        'boxcox': boxcox_train_tt,
        'power': power_train_tt,
    },
)

Swissmetro travel time

Linear specification.

linear_sm_tt = SM_TT_SCALED

Box-Cox transform.

boxcox_sm_tt = boxcox(SM_TT_SCALED, lambda_travel_time)

Power series.

power_sm_tt = power_series(SM_TT_SCALED)

Definition of the catalog. Note that the controller is the same as for train.

sm_tt_catalog = Catalog.from_dict(
    catalog_name='sm_tt_catalog',
    dict_of_expressions={
        'linear': linear_sm_tt,
        'boxcox': boxcox_sm_tt,
        'power': power_sm_tt,
    },
    controlled_by=train_tt_catalog.controlled_by,
)

Car travel time

Linear specification.

linear_car_tt = CAR_TT_SCALED

Box-Cox transform.

boxcox_car_tt = boxcox(CAR_TT_SCALED, lambda_travel_time)

Power series.

power_car_tt = power_series(CAR_TT_SCALED)

Definition of the catalog. Note that the controller is the same as for train.

car_tt_catalog = Catalog.from_dict(
    catalog_name='car_tt_catalog',
    dict_of_expressions={
        'linear': linear_car_tt,
        'boxcox': boxcox_car_tt,
        'power': power_car_tt,
    },
    controlled_by=train_tt_catalog.controlled_by,
)

Definition of the utility functions.

v_train = asc_train + b_time * train_tt_catalog + b_cost * TRAIN_COST_SCALED
v_swissmetro = b_time * sm_tt_catalog + b_cost * SM_COST_SCALED
v_car = asc_car + b_time * car_tt_catalog + b_cost * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

v = {1: v_train, 2: v_swissmetro, 3: v_car}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Definition of the model. This is the contribution of each observation to the log likelihood function.

log_probability = loglogit(v, av, CHOICE)

Read the data

database = read_data()

Create the Biogeme object.

the_biogeme = BIOGEME(
    database, log_probability, generate_html=False, generate_yaml=False
)
the_biogeme.model_name = 'b02nonlinear'
Biogeme parameters read from biogeme.toml.

Estimate the parameters.

dict_of_results = the_biogeme.estimate_catalog()
Estimating 3 models.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b02nonlinear_000000.iter
Cannot read file __b02nonlinear_000000.iter. Statement is ignored.
Starting values for the algorithm: {}
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time  square_tt_coef    cube_tt_coef          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0               0               0               0               0               0               0      1.1e+04       0.26      0.5    0.031    -
    1            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4        5        1   ++
    2            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4      2.5      -11    -
    3            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4      1.2     -8.7    -
    4            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4     0.62     -6.7    -
    5            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4     0.31     -2.4    -
    6            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4     0.16     -1.3    -
    7            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4    0.078     -1.2    -
    8            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4    0.039     -1.5    -
    9            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4     0.02     -2.3    -
   10            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4   0.0098     -3.2    -
   11            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4   0.0049       -4    -
   12            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4   0.0024     -4.6    -
   13            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4   0.0012     -2.5    -
   14            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4  0.00061     -1.3    -
   15            -0.5            -0.5               0               0            -0.3           0.012      9.2e+03          4  0.00031    -0.28    -
   16            -0.5            -0.5         0.00031        -0.00031            -0.3           0.012      9.2e+03          3  0.00031     0.64    +
   17            -0.5            -0.5         0.00061        -0.00023            -0.3           0.012      9.2e+03        1.2  0.00031     0.81    +
   18            -0.5            -0.5         0.00092        -0.00026            -0.3           0.012      9.2e+03       0.15   0.0031     0.99   ++
   19            -0.5            -0.5           0.004        -0.00026            -0.3           0.011      9.2e+03       0.27    0.031        1   ++
   20           -0.52           -0.53           0.034         -0.0004            -0.3          0.0074      9.1e+03       0.32     0.31        1   ++
   21           -0.65           -0.83            0.27         -0.0014           -0.43         -0.0046      8.8e+03        2.4     0.31      0.6    +
   22           -0.74           -0.95           0.021         -0.0003           -0.73           0.022      8.7e+03        8.2     0.31     0.68    +
   23           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2      3.1     0.96   ++
   24           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2      1.5      -89    -
   25           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2     0.76      -27    -
   26           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2     0.38       -4    -
   27           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2     0.19     -1.4    -
   28           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2    0.095       -1    -
   29           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2    0.048     -1.1    -
   30           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2    0.024     -1.3    -
   31           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2    0.012     -1.4    -
   32           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2    0.006     -1.3    -
   33           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2    0.003     -1.1    -
   34           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2   0.0015       -1    -
   35           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2  0.00075    -0.96    -
   36           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2  0.00037    -0.94    -
   37           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2  0.00019    -0.93    -
   38           -0.75            -1.3          -0.032        -0.00023           -0.78          -0.051      8.6e+03        8.2  9.3e-05   -0.025    -
   39           -0.75            -1.3          -0.032        -0.00014           -0.78          -0.051      8.6e+03        4.4  0.00093        1   ++
   40           -0.75            -1.3          -0.031        -0.00012           -0.78          -0.051      8.6e+03        3.3  0.00093     0.58    +
   41           -0.75            -1.3          -0.031        -0.00013           -0.78          -0.051      8.6e+03        0.1   0.0093        1   ++
   42           -0.75            -1.3          -0.027        -0.00015           -0.78          -0.049      8.6e+03     0.0093    0.093        1   ++
   43           -0.73            -1.4          -0.053        -3.5e-05           -0.78           -0.03      8.6e+03       0.29     0.93     0.93   ++
   44           -0.73            -1.4          -0.053        -3.5e-05           -0.78           -0.03      8.6e+03       0.29     0.34    0.098    -
   45           -0.64            -1.7          -0.088         0.00011           -0.78           0.018      8.6e+03        3.2      3.4        1   ++
   46           -0.47              -2          -0.096         0.00015            -0.8            0.14      8.6e+03        1.3       34      1.1   ++
   47           -0.46            -2.1          -0.097         0.00016            -0.8            0.14      8.6e+03       0.09  3.4e+02        1   ++
   48           -0.46            -2.1          -0.097         0.00016            -0.8            0.15      8.6e+03    0.00014  3.4e+03        1   ++
   49           -0.46            -2.1          -0.097         0.00016            -0.8            0.15      8.6e+03    0.00014  3.4e+04        1   ++
   50           -0.46            -2.1          -0.097         0.00016            -0.8            0.15      8.6e+03    4.4e-06  3.4e+04        1   ++
Optimization algorithm has converged.
Relative gradient: 4.389040213358555e-06
Cause of termination: Relative gradient = 4.4e-06 <= 6.1e-06
Number of function evaluations: 92
Number of gradient evaluations: 41
Number of hessian evaluations: 20
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 51
Proportion of Hessian calculation: 20/20 = 100.0%
Optimization time: 0:00:00.740818
Calculate second derivatives and BHHH
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b02nonlinear_000001.iter
Cannot read file __b02nonlinear_000001.iter. Statement is ignored.
Starting values for the algorithm: {}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.76           -0.77            -0.7           -0.29      8.8e+03       0.04       10      1.1   ++
    1           -0.66            -1.2           -0.77         -0.0015      8.7e+03     0.0064    1e+02      1.1   ++
    2           -0.65            -1.3           -0.79           0.016      8.7e+03    0.00012    1e+03        1   ++
    3           -0.65            -1.3           -0.79           0.016      8.7e+03      4e-08    1e+03        1   ++
Optimization algorithm has converged.
Relative gradient: 3.954408093567457e-08
Cause of termination: Relative gradient = 4e-08 <= 6.1e-06
Number of function evaluations: 13
Number of gradient evaluations: 9
Number of hessian evaluations: 4
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 4
Proportion of Hessian calculation: 4/4 = 100.0%
Optimization time: 0:00:00.303418
Calculate second derivatives and BHHH
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b02nonlinear_000002.iter
Cannot read file __b02nonlinear_000002.iter. Statement is ignored.
Starting values for the algorithm: {}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time lambda_travel_t          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.66              -1             1.6           -0.57           -0.29      8.9e+03      0.045        1     0.83    +
    1           -0.57            -1.7            0.55           -0.94         -0.0006      8.7e+03      0.016        1     0.89    +
    2           -0.48            -1.6            0.55           -0.78            0.14      8.6e+03    0.00087       10     0.97   ++
    3           -0.48            -1.6            0.55           -0.78            0.14      8.6e+03    3.5e-06       10        1   ++
Optimization algorithm has converged.
Relative gradient: 3.525451557160213e-06
Cause of termination: Relative gradient = 3.5e-06 <= 6.1e-06
Number of function evaluations: 13
Number of gradient evaluations: 9
Number of hessian evaluations: 4
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 4
Proportion of Hessian calculation: 4/4 = 100.0%
Optimization time: 0:00:01.037716
Calculate second derivatives and BHHH

Number of estimated models.

print(f'A total of {len(dict_of_results)} models have been estimated')
A total of 3 models have been estimated

All estimation results

compiled_results, specs = compile_estimation_results(
    dict_of_results, use_short_names=True
)
display('All estimated models')
display(compiled_results)
All estimated models
                                    Model_000000  ...     Model_000002
Number of estimated parameters                 6  ...                5
Sample size                                10719  ...            10719
Final log likelihood                   -8581.314  ...         -8626.22
Akaike Information Criterion            17174.63  ...         17262.44
Bayesian Information Criterion          17218.31  ...         17298.84
asc_train (t-test)               -0.459  (-10.1)  ...  -0.474  (-10.1)
b_time (t-test)                   -2.09  (-26.2)  ...   -1.62  (-28.9)
square_tt_coef (t-test)         -0.0971  (-18.9)  ...
cube_tt_coef (t-test)           0.000159  (6.09)  ...
b_cost (t-test)                    -0.8  (-15.6)  ...  -0.787  (-15.7)
asc_car (t-test)                   0.148  (4.56)  ...    0.137  (4.04)
lambda_travel_time (t-test)                       ...    0.548  (8.77)

[12 rows x 3 columns]

Glossary

for short_name, spec in specs.items():
    print(f'{short_name}\t{spec}')
Model_000000    train_tt_catalog:power
Model_000001    train_tt_catalog:linear
Model_000002    train_tt_catalog:boxcox

Estimation results of the Pareto optimal models.

pareto_results = pareto_optimal(dict_of_results)
compiled_pareto_results, pareto_specs = compile_estimation_results(
    pareto_results, use_short_names=True
)
No Pareto file has been provided
display('Non dominated models')
display(compiled_pareto_results)
Non dominated models
                                   Model_000000  ...      Model_000002
Number of estimated parameters                5  ...                 6
Sample size                               10719  ...             10719
Final log likelihood                   -8626.22  ...         -8581.314
Akaike Information Criterion           17262.44  ...          17174.63
Bayesian Information Criterion         17298.84  ...          17218.31
asc_train (t-test)              -0.474  (-10.1)  ...   -0.459  (-10.1)
b_time (t-test)                  -1.62  (-28.9)  ...    -2.09  (-26.2)
lambda_travel_time (t-test)       0.548  (8.77)  ...
b_cost (t-test)                 -0.787  (-15.7)  ...     -0.8  (-15.6)
asc_car (t-test)                  0.137  (4.04)  ...     0.148  (4.56)
square_tt_coef (t-test)                          ...  -0.0971  (-18.9)
cube_tt_coef (t-test)                            ...  0.000159  (6.09)

[12 rows x 3 columns]

Glossary.

for short_name, spec in pareto_specs.items():
    print(f'{short_name}\t{spec}')
Model_000000    train_tt_catalog:boxcox
Model_000001    train_tt_catalog:linear
Model_000002    train_tt_catalog:power

Total running time of the script: (0 minutes 4.301 seconds)

Gallery generated by Sphinx-Gallery