biogeme.draws module
Generation of various types of draws.
- author:
Michel Bierlaire
- date:
Tue Jun 18 19:05:13 2019
- biogeme.draws.getAntithetic(uniform_draws, sample_size, number_of_draws)[source]
Warning
This function is deprecated. Use
get_antithetic()
instead.- Return type:
ndarray
- Parameters:
uniform_draws (Callable[[int, int], ndarray])
sample_size (int)
number_of_draws (int)
- biogeme.draws.getHaltonDraws(sample_size, number_of_draws, symmetric=False, base=2, skip=0, shuffled=False)[source]
Warning
This function is deprecated. Use
get_halton_draws()
instead.- Parameters:
sample_size (int)
number_of_draws (int)
symmetric (bool)
base (int)
skip (int)
shuffled (bool)
- biogeme.draws.getLatinHypercubeDraws(sample_size, number_of_draws, symmetric=False, uniformNumbers=None)[source]
Warning
This function is deprecated. Use
get_latin_hypercube_draws()
instead.- Parameters:
sample_size (int)
number_of_draws (int)
symmetric (bool)
- biogeme.draws.getNormalWichuraDraws(sample_size, number_of_draws, uniform_numbers=None, antithetic=False)[source]
Warning
This function is deprecated. Use
get_normal_wichura_draws()
instead.- Parameters:
sample_size (int)
number_of_draws (int)
uniform_numbers (ndarray | None)
antithetic (bool)
- biogeme.draws.getUniform(sample_size, number_of_draws, symmetric=False)[source]
Warning
This function is deprecated. Use
get_uniform()
instead.- Parameters:
sample_size (int)
number_of_draws (int)
symmetric (bool)
- biogeme.draws.get_antithetic(uniform_draws, sample_size, number_of_draws)[source]
Returns antithetic uniform draws
- Parameters:
uniform_draws (function) – function taking two arguments (sample_size, number_of_draws) and returning U[0, 1] draws
sample_size (int) – number of observations for which draws must be generated. If None, a one dimensional array will be generated. If it has a values k, then k series of draws will be generated
number_of_draws (int) – number of draws to generate.
- Returns:
numpy array with the antithetic draws
- Return type:
numpy.array
Example:
draws = dr.getAntithetic(dr.getUniform, sample_size=3, number_of_draws=10) array([[0.48592363, 0.13648133, 0.35925946, 0.32431338, 0.32997936, 0.51407637, 0.86351867, 0.64074054, 0.67568662, 0.67002064], [0.89261997, 0.0331808 , 0.30767182, 0.93433648, 0.17196124, 0.10738003, 0.9668192 , 0.69232818, 0.06566352, 0.82803876], [0.81095587, 0.96171364, 0.40984817, 0.72177258, 0.16481096, 0.18904413, 0.03828636, 0.59015183, 0.27822742, 0.83518904]])
- biogeme.draws.get_halton_draws(sample_size, number_of_draws, symmetric=False, base=2, skip=0, shuffled=False)[source]
Generate Halton draws. Implementation by Cristian Arteaga, University of Nevada Las Vegas,
- Parameters:
sample_size (int) – number of observations for which draws must be generated. If None, a one dimensional array will be generated. If it has a values k, then k series of draws will be generated
number_of_draws (int) – number of draws to generate.
symmetric (bool) – if True, draws from [-1: 1] are generated. If False, draws from [0: 1] are generated. Default: False
base (int) – generate Halton draws for a given basis. Ideally, it should be a prime number. Default: 2.
skip (int) – the number of elements of the sequence to be discarded.
shuffled (bool) – if True, each series is shuffled
- Returns:
numpy array with the draws
- Return type:
numpy.array
Example:
halton = dr.getHaltonDraws(sample_size=2, number_of_draws=10, base=3) array([[0.33333333, 0.66666667, 0.11111111, 0.44444444, 0.77777778, 0.22222222, 0.55555556, 0.88888889, 0.03703704, 0.37037037], [0.7037037 , 0.14814815, 0.48148148, 0.81481481, 0.25925926, 0.59259259, 0.92592593, 0.07407407, 0.40740741, 0.74074074]])
- Raises:
BiogemeError – if the number of draws is not positive.
BiogemeError – if the sample size is not positive.
- Parameters:
sample_size (int)
number_of_draws (int)
symmetric (bool)
base (int)
skip (int)
shuffled (bool)
- Return type:
ndarray
- biogeme.draws.get_latin_hypercube_draws(sample_size, number_of_draws, symmetric=False, uniform_numbers=None)[source]
Implementation of the Modified Latin Hypercube Sampling proposed by Hess et al., (2006).
- Parameters:
sample_size (int) – number of observations for which draws must be generated. If None, a one dimensional array will be generated. If it has a values k, then k series of draws will be generated
number_of_draws (int) – number of draws to generate.
symmetric (bool) – if True, draws from [-1: 1] are generated. If False, draws from [0: 1] are generated. Default: False
uniform_numbers (numpy.array) – numpy with uniformly distributed numbers. If None, the numpy uniform number generator is used.
- Returns:
numpy array with the draws
- Return type:
numpy.array
Example:
latinHypercube = dr.getLatinHypercubeDraws(sample_size=3, number_of_draws=10) array([[0.43362897, 0.5275741 , 0.09215663, 0.94056236, 0.34376868, 0.87195551, 0.41495219, 0.71736691, 0.23198736, 0.145561 ], [0.30520544, 0.78082964, 0.83591146, 0.2733167 , 0.53890906, 0.61607469, 0.00699715, 0.17179441, 0.7557228 , 0.39733102], [0.49676864, 0.67073483, 0.9788854 , 0.5726069 , 0.11894558, 0.05515471, 0.2640275 , 0.82093696, 0.92034628, 0.64866597]])
- Raises:
BiogemeError – if the number of draws is not positive.
BiogemeError – if the sample size is not positive.
BiogemeError – if the number of uniform draws is inconsistent.
- Parameters:
sample_size (int)
number_of_draws (int)
symmetric (bool)
uniform_numbers (ndarray | None)
- Return type:
ndarray
- biogeme.draws.get_normal_wichura_draws(sample_size, number_of_draws, uniform_numbers=None, antithetic=False)[source]
Generate pseudo-random numbers from a normal distribution N(0, 1)
It uses the Algorithm AS241 by Wichura (1988) which produces the normal deviate z corresponding to a given lower tail area of p; z is accurate to about 1 part in \(10^{16}\).
- Parameters:
sample_size (int) – number of observations for which draws must be generated. If None, a one dimensional array will be generated. If it has a values k, then k series of draws will be generated
number_of_draws (int) – number of draws to generate.
uniform_numbers (numpy.array) – numpy with uniformly distributed numbers. If None, the numpy uniform number generator is used.
antithetic (bool) – if True, only half of the draws are actually generated, and the series are completed with their antithetic version.
- Returns:
numpy array with the draws
- Return type:
numpy.array
Example:
draws = dr.getNormalWichuraDraws(sample_size=3, number_of_draws=10) array( [[ 0.52418458, -1.04344204, -2.11642482, 0.48257162, -2.67188279, -1.89993283, 0.28251041, -0.38424425, 1.53182226, 0.30651874], [-0.7937038 , -0.07884121, -0.91005616, -0.98855175, 1.09405753, -0.5997651 , -1.70785113, 1.57571384, -0.33208723, -1.03510102], [-0.13853654, 0.92595498, -0.80136586, 1.68454196, 0.9955927 , -0.28615154, 2.10635541, 0.0436191 , -0.25417774, 0.01026933]] )
- Raises:
BiogemeError – if the number of draws is not positive.
BiogemeError – if the sample size is not positive.
- Parameters:
sample_size (int)
number_of_draws (int)
uniform_numbers (ndarray | None)
antithetic (bool)
- biogeme.draws.get_uniform(sample_size, number_of_draws, symmetric=False)[source]
Uniform [0, 1] or [-1, 1] numbers
- Parameters:
sample_size (int) – number of observations for which draws must be generated. If None, a one dimensional array will be generated. If it has a values k, then k series of draws will be generated
number_of_draws (int) – number of draws to generate.
symmetric (bool) – if True, draws from [-1: 1] are generated. If False, draws from [0: 1] are generated. Default: False
- Returns:
numpy array with the draws
- Return type:
numpy.array
Example:
draws = dr.getUniform(sample_size=3, number_of_draws=10, symmetric=False) array( [[0.13053817, 0.63892308, 0.55031567, 0.26347854, 0.16730932, 0.77745367, 0.48283887, 0.84247501, 0.20550219, 0.02373537], [0.68935846, 0.03363595, 0.36006669, 0.26709364, 0.54907706, 0.22492104, 0.2494399 , 0.17323209, 0.52370401, 0.54091257], [0.40310204, 0.89916711, 0.86065005, 0.94277699, 0.09077065, 0.40107731, 0.22554722, 0.47693135, 0.14058265, 0.17397031]] ) draws = dr.getUniform(sample_size=3, number_of_draws=10, symmetric=True) array( [[ 0.74403237, -0.27995692, 0.33997421, -0.89405035, -0.129761 , 0.86593325, 0.30657422, 0.82435619, 0.498482 , 0.24561616], [-0.48239607, -0.29257815, -0.98342034, 0.68392813, -0.25379429, 0.49359859, -0.26459883, 0.14569724, -0.68860467, -0.40903446], [ 0.93251627, -0.85166912, 0.58096917, 0.39289882, -0.65088635, 0.40114744, -0.61327161, 0.08900539, -0.20985417, 0.67542226]] )
- Raises:
BiogemeError – if the number of draws is not positive.
BiogemeError – if the sample size is not positive.
- Parameters:
sample_size (int)
number_of_draws (int)
symmetric (bool)
- Return type:
ndarray