Note
Go to the end to download the full example code.
7. Latent class model¶
Bayesian estimation of a discrete mixture of logit (or latent class model).
Michel Bierlaire, EPFL Mon Nov 03 2025, 13:36:51
from IPython.core.display_functions import display
from biogeme.bayesian_estimation import BayesianResults, get_pandas_estimated_parameters
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, log
from biogeme.models import logit
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_time = Beta('b_time', 0, None, None, 0)
b_cost = Beta('b_cost', 0, None, None, 0)
Class membership probability.
prob_class1 = Beta('prob_class1', 0.5, 0, 1, 0)
prob_class2 = 1 - prob_class1
Definition of the utility functions for latent_old class 1, where the time coefficient is zero.
v_train_class_1 = asc_train + b_cost * TRAIN_COST_SCALED
v_swissmetro_class_1 = asc_sm + b_cost * SM_COST_SCALED
v_car_class_1 = asc_car + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v_class_1 = {1: v_train_class_1, 2: v_swissmetro_class_1, 3: v_car_class_1}
Definition of the utility functions for latent_old class 2, whete the time coefficient is estimated.
v_train_class_2 = asc_train + b_time * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro_class_2 = asc_sm + b_time * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car_class_2 = asc_car + b_time * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v_class_2 = {1: v_train_class_2, 2: v_swissmetro_class_2, 3: v_car_class_2}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
The choice model is a discrete mixture of logit, with availability conditions
choice_probability_class_1 = logit(v_class_1, av, CHOICE)
choice_probability_class_2 = logit(v_class_2, av, CHOICE)
prob = (
prob_class1 * choice_probability_class_1 + prob_class2 * choice_probability_class_2
)
log_probability = log(prob)
Create the Biogeme object
the_biogeme = BIOGEME(database, log_probability)
the_biogeme.model_name = 'b07_discrete_mixture'
Estimate the parameters.
try:
results = BayesianResults.from_netcdf(
filename=f'saved_results/{the_biogeme.model_name}.nc'
)
except FileNotFoundError:
results = the_biogeme.bayesian_estimation()
load finished in 4350 ms (4.35 s)
print(results.short_summary())
posterior_predictive_loglike finished in 248 ms
expected_log_likelihood finished in 11 ms
best_draw_log_likelihood finished in 11 ms
waic_res finished in 618 ms
waic finished in 618 ms
loo_res finished in 7493 ms (7.49 s)
loo finished in 7493 ms (7.49 s)
Sample size 6768
Sampler NUTS
Number of chains 4
Number of draws per chain 2000
Total number of draws 8000
Acceptance rate target 0.9
Run time 0:01:20.750559
Posterior predictive log-likelihood (sum of log mean p) -5208.04
Expected log-likelihood E[log L(Y|θ)] -5211.01
Best-draw log-likelihood (posterior upper bound) -5208.55
WAIC (Widely Applicable Information Criterion) -5213.98
WAIC Standard Error 53.21
Effective number of parameters (p_WAIC) 5.94
LOO (Leave-One-Out Cross-Validation) -5213.98
LOO Standard Error 53.21
Effective number of parameters (p_LOO) 5.94
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value (mean) ... ESS (bulk) ESS (tail)
0 asc_train -0.399679 ... 4426.559689 5037.338577
1 b_cost -1.265343 ... 5089.817814 4912.904953
2 asc_car 0.123068 ... 4415.769041 4980.176025
3 b_time -2.807006 ... 4300.831069 4195.683113
4 prob_class1 0.251723 ... 4565.556656 4841.224547
[5 rows x 12 columns]
Total running time of the script: (0 minutes 35.683 seconds)