Note
Go to the end to download the full example code.
25. Triangular mixture of logitΒΆ
Bayesian estimation of a mixture of logit models. The mixing distribution is specified by the user. Here, a triangular distribution.
Michel Bierlaire, EPFL Tue Nov 18 2025, 12:35:26
from functools import partial
import biogeme.biogeme_logging as blog
import pymc as pm
from IPython.core.display_functions import display
from biogeme.bayesian_estimation import BayesianResults, get_pandas_estimated_parameters
from biogeme.biogeme import BIOGEME
from biogeme.draws import PyMcDistributionFactory
from biogeme.expressions import Beta, DistributedParameter, Draws
from biogeme.models import loglogit
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b25_triangular_mixture.py')
Example b25_triangular_mixture.py
The scale parameters must stay away from zero. We define a small but positive lower bound
POSITIVE_LOWER_BOUND = 1.0e-5
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)
Define a random parameter with a triangular distribution. The triangular distribution is not directly available from Biogeme. It has to be generated by a function provided by the user, based on PyMC available distributions.
See the PyMC documentation: https://www.pymc.io/projects/docs/en/stable/api/distributions.html
Mean of the distribution.
b_time = Beta('b_time', 0, None, None, 0)
Scale of the distribution. It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 1, POSITIVE_LOWER_BOUND, None, 0)
Distribution of the draws. The user must define a function that takes a str as argument (corresponding to the name of the random variable) and return a pymc.distributions.Distribution
triangular_factory: PyMcDistributionFactory = partial(
pm.Triangular,
lower=-1.0,
c=0.0,
upper=1.0,
)
Associate the function with a name
DISTRIBUTIONS = {'TRIANGULAR': triangular_factory}
Define a random parameter with a triangular distribution, designed to be used for Monte-Carlo simulation.
b_time_rnd = DistributedParameter(
'b_time_rnd',
b_time
+ b_time_s * Draws('b_time_eps', 'TRIANGULAR', dict_of_distributions=DISTRIBUTIONS),
)
Definition of the utility functions.
v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional to b_time_rnd, we have a logit model (called the kernel)
conditional_log_probability = loglogit(v, av, CHOICE)
Create the Biogeme object.
the_biogeme = BIOGEME(
database,
conditional_log_probability,
)
the_biogeme.model_name = 'b25_triangular'
Biogeme parameters read from biogeme.toml.
Estimate the parameters.
try:
bayesian_results = BayesianResults.from_netcdf(
filename=f'saved_results/{the_biogeme.model_name}.nc'
)
except FileNotFoundError:
bayesian_results = the_biogeme.bayesian_estimation()
Loaded NetCDF file size: 1.8 GB
load finished in 9624 ms (9.62 s)
Get the results in a pandas table
pandas_results = get_pandas_estimated_parameters(
estimation_results=bayesian_results,
)
display(pandas_results)
Diagnostics computation took 75.8 seconds (cached).
Name Value (mean) Value (median) ... R hat ESS (bulk) ESS (tail)
0 asc_train -0.393645 -0.393730 ... 1.000042 6129.449492 6131.566807
1 b_time -2.282075 -2.280289 ... 1.001155 1696.593924 3441.429131
2 b_cost -1.284068 -1.282969 ... 1.000366 7710.204636 6241.910672
3 asc_car 0.141109 0.140517 ... 1.000087 3587.630483 5766.455070
4 b_time_s 4.013062 4.006510 ... 1.002735 1169.172079 2912.845359
[5 rows x 12 columns]
Total running time of the script: (1 minutes 25.536 seconds)