6a. Mixture of logit models with uniform distributionΒΆ

Example of a uniform mixture of logit models, using Monte-Carlo integration.

Michel Bierlaire, EPFL Fri Jun 20 2025, 10:43:05

from IPython.core.display_functions import display

import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, Draws, MonteCarlo, log
from biogeme.models import logit
from biogeme.results_processing import (
    EstimationResults,
    get_pandas_estimated_parameters,
)

See the data processing script: Data preparation for Swissmetro.

from swissmetro_data import (
    CAR_AV_SP,
    CAR_CO_SCALED,
    CAR_TT_SCALED,
    CHOICE,
    SM_AV,
    SM_COST_SCALED,
    SM_TT_SCALED,
    TRAIN_AV_SP,
    TRAIN_COST_SCALED,
    TRAIN_TT_SCALED,
    database,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b06a_unif_mixture.py')
Example b06a_unif_mixture.py

Parameters to be estimated.

asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)

Define a random parameter, uniformly distributed, designed to be used for Monte-Carlo simulation.

b_time = Beta('b_time', 0, None, None, 0)
b_time_s = Beta('b_time_s', 1, None, None, 0)
b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'UNIFORMSYM')

Definition of the utility functions.

v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

v = {1: v_train, 2: v_swissmetro, 3: v_car}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Conditional to b_time_rnd, we have a logit model (called the kernel).

conditional_probability = logit(v, av, CHOICE)
# We integrate over b_time_rnd using Monte-Carlo
log_probability = log(MonteCarlo(conditional_probability))

Create the Biogeme object.

the_biogeme = BIOGEME(database, log_probability, number_of_draws=10000, seed=1223)
the_biogeme.model_name = 'b06a_unif_mixture'
Biogeme parameters read from biogeme.toml.

Estimate the parameters.

try:
    results = EstimationResults.from_yaml_file(
        filename=f'saved_results/{the_biogeme.model_name}.yaml'
    )
except FileNotFoundError:
    results = the_biogeme.estimate()
*** Initial values of the parameters are obtained from the file __b06a_unif_mixture.iter
Cannot read file __b06a_unif_mixture.iter. Statement is ignored.
Starting values for the algorithm: {}
As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the algorithm from "automatic" to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Iter.       asc_train          b_time        b_time_s          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0              -1              -1               2              -1              -1      5.6e+03       0.09        1     0.39    +
    1              -1              -1               2              -1              -1      5.6e+03       0.09      0.5    -0.11    -
    2            -1.5            -1.3             1.5            -1.5            -0.5      5.4e+03      0.074      0.5     0.32    +
    3            -1.5            -1.3             1.5            -1.5            -0.5      5.4e+03      0.074     0.25    -0.17    -
    4            -1.2              -1             1.8            -1.2           -0.25      5.3e+03      0.028     0.25     0.47    +
    5              -1            -1.3             1.5              -1            -0.5      5.3e+03       0.04     0.25     0.16    +
    6              -1            -1.3             1.5              -1            -0.5      5.3e+03       0.04     0.12   -0.064    -
    7           -0.88            -1.2             1.5            -1.1           -0.38      5.3e+03      0.024     0.12     0.63    +
    8              -1            -1.3             1.4            -1.2           -0.25      5.3e+03      0.017     0.12     0.33    +
    9           -0.88            -1.4             1.5            -1.1           -0.24      5.3e+03     0.0092     0.12     0.88    +
   10           -0.75            -1.5             1.7            -1.3           -0.11      5.2e+03      0.012     0.12     0.71    +
   11           -0.68            -1.6             1.7            -1.1          -0.079      5.2e+03     0.0073     0.12     0.71    +
   12           -0.56            -1.7             1.9            -1.2          -0.043      5.2e+03     0.0092      1.2     0.91   ++
   13           -0.56            -1.7             1.9            -1.2          -0.043      5.2e+03     0.0092     0.62     -2.1    -
   14           -0.56            -1.7             1.9            -1.2          -0.043      5.2e+03     0.0092     0.31     -1.4    -
   15           -0.56            -1.7             1.9            -1.2          -0.043      5.2e+03     0.0092     0.16    -0.13    -
   16           -0.59            -1.9               2            -1.2           0.049      5.2e+03       0.01     0.16     0.38    +
   17           -0.53            -1.9             2.2            -1.2          -0.011      5.2e+03     0.0045     0.16     0.81    +
   18           -0.53            -1.9             2.2            -1.2          -0.011      5.2e+03     0.0045    0.078    -0.45    -
   19           -0.52            -1.9             2.2            -1.2           0.067      5.2e+03     0.0078    0.078     0.31    +
   20           -0.48              -2             2.3            -1.2            0.04      5.2e+03     0.0037     0.78     0.95   ++
   21           -0.48              -2             2.3            -1.2            0.04      5.2e+03     0.0037     0.39     -1.2    -
   22           -0.48              -2             2.3            -1.2            0.04      5.2e+03     0.0037      0.2    -0.73    -
   23           -0.48              -2             2.3            -1.2            0.04      5.2e+03     0.0037    0.098    0.068    -
   24            -0.5            -2.1             2.4            -1.3           0.063      5.2e+03     0.0065    0.098     0.48    +
   25           -0.46            -2.1             2.5            -1.2           0.097      5.2e+03     0.0048    0.098     0.82    +
   26           -0.44            -2.2             2.6            -1.2            0.11      5.2e+03     0.0033     0.98     0.94   ++
   27           -0.44            -2.2             2.6            -1.2            0.11      5.2e+03     0.0033     0.48      -20    -
   28           -0.44            -2.2             2.6            -1.2            0.11      5.2e+03     0.0033     0.24     -4.1    -
   29           -0.44            -2.2             2.6            -1.2            0.11      5.2e+03     0.0033     0.12    -0.64    -
   30           -0.41            -2.2             2.7            -1.3            0.11      5.2e+03      0.003     0.12     0.34    +
   31           -0.41            -2.2             2.7            -1.3            0.11      5.2e+03      0.003     0.06    -0.52    -
   32           -0.41            -2.2             2.7            -1.3            0.12      5.2e+03    0.00083     0.06     0.77    +
   33           -0.38            -2.3             2.8            -1.3            0.15      5.2e+03     0.0023     0.06     0.13    +
   34           -0.41            -2.3             2.8            -1.3            0.13      5.2e+03     0.0024     0.06     0.33    +
   35           -0.41            -2.3             2.8            -1.3            0.13      5.2e+03     0.0024     0.03     -1.7    -
   36           -0.41            -2.3             2.8            -1.3            0.13      5.2e+03     0.0024    0.015     -0.6    -
   37           -0.41            -2.3             2.8            -1.3            0.13      5.2e+03    0.00081    0.015     0.43    +
   38           -0.39            -2.3             2.8            -1.3            0.13      5.2e+03    0.00082    0.015     0.83    +
   39           -0.39            -2.3             2.8            -1.3            0.13      5.2e+03    0.00082   0.0075    -0.55    -
   40           -0.39            -2.3             2.8            -1.3            0.14      5.2e+03    0.00058   0.0075     0.37    +
   41           -0.39            -2.3             2.8            -1.3            0.14      5.2e+03    0.00023   0.0075     0.65    +
   42           -0.39            -2.3             2.8            -1.3            0.14      5.2e+03     0.0002   0.0075     0.62    +
   43           -0.39            -2.3             2.8            -1.3            0.14      5.2e+03    0.00015   0.0075     0.78    +
   44           -0.39            -2.3             2.9            -1.3            0.14      5.2e+03    0.00036   0.0075     0.49    +
   45           -0.39            -2.3             2.9            -1.3            0.14      5.2e+03    7.7e-05    0.075     0.92   ++
   46           -0.39            -2.3             2.9            -1.3            0.14      5.2e+03    6.5e-05    0.075     0.37    +
   47           -0.39            -2.3             2.9            -1.3            0.14      5.2e+03    6.8e-06     0.75     0.98   ++
   48           -0.39            -2.3             2.9            -1.3            0.14      5.2e+03    2.3e-06     0.75     0.66   ++
Optimization algorithm has converged.
Relative gradient: 2.346420034070932e-06
Cause of termination: Relative gradient = 2.3e-06 <= 6.1e-06
Number of function evaluations: 114
Number of gradient evaluations: 65
Number of hessian evaluations: 0
Algorithm: BFGS with trust region for simple bound constraints
Number of iterations: 49
Proportion of Hessian calculation: 0/32 = 0.0%
Optimization time: 0:01:53.544645
Calculate second derivatives and BHHH
File b06a_unif_mixture.html has been generated.
File b06a_unif_mixture.yaml has been generated.
print(results.short_summary())
Results for model b06a_unif_mixture
Nbr of parameters:              5
Sample size:                    6768
Excluded data:                  3960
Final log likelihood:           -5215.805
Akaike Information Criterion:   10441.61
Bayesian Information Criterion: 10475.71
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
        Name     Value  Robust std err.  Robust t-stat.  Robust p-value
0  asc_train -0.386220         0.066029       -5.849265    4.937510e-09
1     b_time -2.316295         0.125946      -18.391184    0.000000e+00
2   b_time_s  2.868552         0.199638       14.368781    0.000000e+00
3     b_cost -1.277277         0.086562      -14.755635    0.000000e+00
4    asc_car  0.143914         0.053299        2.700124    6.931367e-03

Total running time of the script: (3 minutes 23.102 seconds)

Gallery generated by Sphinx-Gallery