Nested logit

Estimation of a nested logit model using sampling of alternatives.

Michel Bierlaire Sat Jul 26 2025, 13:01:22

import pandas as pd
from IPython.core.display_functions import display

import biogeme.biogeme_logging as blog
from alternatives import ID_COLUMN, all_alternatives, alternatives, asian, partitions
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta
from biogeme.nests import NestsForNestedLogit, OneNestForNestedLogit
from biogeme.results_processing import get_pandas_estimated_parameters
from biogeme.sampling_of_alternatives import (
    ChoiceSetsGeneration,
    GenerateModel,
    SamplingContext,
    generate_segment_size,
)
from compare import compare
from specification_sampling import V, combined_variables
logger = blog.get_screen_logger(level=blog.INFO)
SAMPLE_SIZE = 20  # out of 100
SAMPLE_SIZE_MEV = 33  # out of 33
CHOICE_COLUMN = 'nested_0'
PARTITION = 'downtown'
MEV_PARTITION = 'uniform_asian'
MODEL_NAME = f'nested_{PARTITION}_{SAMPLE_SIZE}'
FILE_NAME = f'{MODEL_NAME}.dat'
the_partition = partitions.get(PARTITION)
if the_partition is None:
    raise ValueError(f'Unknown partition: {PARTITION}')
segment_sizes = generate_segment_size(SAMPLE_SIZE, the_partition.number_of_segments())

We use all alternatives in the nest.

mev_partition = partitions.get(MEV_PARTITION)
if mev_partition is None:
    raise ValueError(f'Unknown partition: {MEV_PARTITION}')
mev_segment_sizes = [SAMPLE_SIZE_MEV]
observations = pd.read_csv('obs_choice.dat')
context = SamplingContext(
    the_partition=the_partition,
    sample_sizes=segment_sizes,
    individuals=observations,
    choice_column=CHOICE_COLUMN,
    alternatives=alternatives,
    id_column=ID_COLUMN,
    biogeme_file_name=FILE_NAME,
    utility_function=V,
    combined_variables=combined_variables,
    mev_partition=mev_partition,
    mev_sample_sizes=mev_segment_sizes,
)
logger.info(context.reporting())
Size of the choice set: 100
Main partition: 2 segment(s) of size 46, 54
Main sample: 20: 10/46, 10/54
Nbr of MEV alternatives: 33
MEV partition: 1 segment(s) of size 33
MEV sample: 33: 33/33
the_data_generation = ChoiceSetsGeneration(context=context)
the_model_generation = GenerateModel(context=context)
biogeme_database = the_data_generation.sample_and_merge(recycle=False)
Generating 20 + 33 alternatives for 10000 observations

  0%|          | 0/10000 [00:00<?, ?it/s]
  1%|          | 81/10000 [00:00<00:12, 805.47it/s]
  2%|▏         | 163/10000 [00:00<00:12, 807.42it/s]
  2%|▏         | 247/10000 [00:00<00:11, 818.07it/s]
  3%|▎         | 330/10000 [00:00<00:11, 822.27it/s]
  4%|▍         | 413/10000 [00:00<00:11, 819.55it/s]
  5%|▍         | 497/10000 [00:00<00:11, 824.42it/s]
  6%|▌         | 581/10000 [00:00<00:11, 829.42it/s]
  7%|▋         | 664/10000 [00:00<00:11, 823.70it/s]
  7%|▋         | 748/10000 [00:00<00:11, 827.71it/s]
  8%|▊         | 831/10000 [00:01<00:11, 825.62it/s]
  9%|▉         | 914/10000 [00:01<00:11, 822.92it/s]
 10%|▉         | 997/10000 [00:01<00:10, 822.89it/s]
 11%|█         | 1080/10000 [00:01<00:10, 821.81it/s]
 12%|█▏        | 1168/10000 [00:01<00:10, 837.25it/s]
 13%|█▎        | 1252/10000 [00:01<00:10, 833.66it/s]
 13%|█▎        | 1336/10000 [00:01<00:10, 830.67it/s]
 14%|█▍        | 1420/10000 [00:01<00:10, 828.48it/s]
 15%|█▌        | 1503/10000 [00:01<00:10, 824.40it/s]
 16%|█▌        | 1589/10000 [00:01<00:10, 833.16it/s]
 17%|█▋        | 1673/10000 [00:02<00:10, 825.09it/s]
 18%|█▊        | 1756/10000 [00:02<00:10, 822.74it/s]
 18%|█▊        | 1839/10000 [00:02<00:09, 819.38it/s]
 19%|█▉        | 1922/10000 [00:02<00:09, 821.75it/s]
 20%|██        | 2008/10000 [00:02<00:09, 832.20it/s]
 21%|██        | 2092/10000 [00:02<00:09, 826.94it/s]
 22%|██▏       | 2176/10000 [00:02<00:09, 829.99it/s]
 23%|██▎       | 2260/10000 [00:02<00:09, 827.86it/s]
 23%|██▎       | 2343/10000 [00:02<00:09, 827.32it/s]
 24%|██▍       | 2429/10000 [00:02<00:09, 834.59it/s]
 25%|██▌       | 2513/10000 [00:03<00:08, 833.53it/s]
 26%|██▌       | 2597/10000 [00:03<00:08, 834.25it/s]
 27%|██▋       | 2681/10000 [00:03<00:08, 827.96it/s]
 28%|██▊       | 2764/10000 [00:03<00:08, 824.97it/s]
 28%|██▊       | 2848/10000 [00:03<00:08, 827.32it/s]
 29%|██▉       | 2931/10000 [00:03<00:08, 826.58it/s]
 30%|███       | 3014/10000 [00:03<00:08, 819.10it/s]
 31%|███       | 3096/10000 [00:03<00:08, 818.76it/s]
 32%|███▏      | 3178/10000 [00:03<00:08, 817.95it/s]
 33%|███▎      | 3262/10000 [00:03<00:08, 823.12it/s]
 33%|███▎      | 3346/10000 [00:04<00:08, 827.76it/s]
 34%|███▍      | 3429/10000 [00:04<00:07, 827.88it/s]
 35%|███▌      | 3512/10000 [00:04<00:07, 822.43it/s]
 36%|███▌      | 3596/10000 [00:04<00:07, 826.15it/s]
 37%|███▋      | 3680/10000 [00:04<00:07, 828.84it/s]
 38%|███▊      | 3765/10000 [00:04<00:07, 832.63it/s]
 38%|███▊      | 3849/10000 [00:04<00:07, 831.00it/s]
 39%|███▉      | 3933/10000 [00:04<00:07, 832.79it/s]
 40%|████      | 4017/10000 [00:04<00:07, 831.01it/s]
 41%|████      | 4101/10000 [00:04<00:07, 831.78it/s]
 42%|████▏     | 4186/10000 [00:05<00:06, 835.95it/s]
 43%|████▎     | 4270/10000 [00:05<00:06, 832.13it/s]
 44%|████▎     | 4354/10000 [00:05<00:06, 827.04it/s]
 44%|████▍     | 4437/10000 [00:05<00:06, 825.98it/s]
 45%|████▌     | 4520/10000 [00:05<00:06, 826.76it/s]
 46%|████▌     | 4606/10000 [00:05<00:06, 835.66it/s]
 47%|████▋     | 4692/10000 [00:05<00:06, 840.42it/s]
 48%|████▊     | 4777/10000 [00:05<00:06, 838.36it/s]
 49%|████▊     | 4861/10000 [00:05<00:06, 836.04it/s]
 49%|████▉     | 4945/10000 [00:05<00:06, 831.22it/s]
 50%|█████     | 5033/10000 [00:06<00:05, 845.33it/s]
 51%|█████     | 5122/10000 [00:06<00:05, 856.13it/s]
 52%|█████▏    | 5211/10000 [00:06<00:05, 864.10it/s]
 53%|█████▎    | 5300/10000 [00:06<00:05, 869.84it/s]
 54%|█████▍    | 5389/10000 [00:06<00:05, 873.33it/s]
 55%|█████▍    | 5477/10000 [00:06<00:05, 869.23it/s]
 56%|█████▌    | 5564/10000 [00:06<00:05, 839.79it/s]
 56%|█████▋    | 5649/10000 [00:06<00:05, 829.17it/s]
 57%|█████▋    | 5733/10000 [00:06<00:05, 815.31it/s]
 58%|█████▊    | 5815/10000 [00:07<00:05, 810.23it/s]
 59%|█████▉    | 5898/10000 [00:07<00:05, 815.00it/s]
 60%|█████▉    | 5980/10000 [00:07<00:04, 815.34it/s]
 61%|██████    | 6062/10000 [00:07<00:04, 809.97it/s]
 61%|██████▏   | 6145/10000 [00:07<00:04, 814.88it/s]
 62%|██████▏   | 6227/10000 [00:07<00:04, 811.72it/s]
 63%|██████▎   | 6310/10000 [00:07<00:04, 814.65it/s]
 64%|██████▍   | 6395/10000 [00:07<00:04, 824.37it/s]
 65%|██████▍   | 6478/10000 [00:07<00:04, 820.22it/s]
 66%|██████▌   | 6561/10000 [00:07<00:04, 820.45it/s]
 66%|██████▋   | 6645/10000 [00:08<00:04, 823.88it/s]
 67%|██████▋   | 6728/10000 [00:08<00:03, 822.21it/s]
 68%|██████▊   | 6813/10000 [00:08<00:03, 828.92it/s]
 69%|██████▉   | 6896/10000 [00:08<00:03, 823.93it/s]
 70%|██████▉   | 6979/10000 [00:08<00:03, 821.30it/s]
 71%|███████   | 7062/10000 [00:08<00:03, 816.39it/s]
 71%|███████▏  | 7145/10000 [00:08<00:03, 818.72it/s]
 72%|███████▏  | 7231/10000 [00:08<00:03, 830.89it/s]
 73%|███████▎  | 7315/10000 [00:08<00:03, 828.61it/s]
 74%|███████▍  | 7398/10000 [00:08<00:03, 827.78it/s]
 75%|███████▍  | 7481/10000 [00:09<00:03, 828.40it/s]
 76%|███████▌  | 7564/10000 [00:09<00:02, 825.99it/s]
 76%|███████▋  | 7650/10000 [00:09<00:02, 835.37it/s]
 77%|███████▋  | 7734/10000 [00:09<00:02, 835.32it/s]
 78%|███████▊  | 7818/10000 [00:09<00:02, 833.44it/s]
 79%|███████▉  | 7902/10000 [00:09<00:02, 828.86it/s]
 80%|███████▉  | 7985/10000 [00:09<00:02, 825.35it/s]
 81%|████████  | 8068/10000 [00:09<00:02, 826.45it/s]
 82%|████████▏ | 8153/10000 [00:09<00:02, 831.30it/s]
 82%|████████▏ | 8237/10000 [00:09<00:02, 828.46it/s]
 83%|████████▎ | 8320/10000 [00:10<00:02, 826.20it/s]
 84%|████████▍ | 8403/10000 [00:10<00:01, 824.08it/s]
 85%|████████▍ | 8486/10000 [00:10<00:01, 823.84it/s]
 86%|████████▌ | 8571/10000 [00:10<00:01, 831.26it/s]
 87%|████████▋ | 8655/10000 [00:10<00:01, 830.20it/s]
 87%|████████▋ | 8739/10000 [00:10<00:01, 831.95it/s]
 88%|████████▊ | 8824/10000 [00:10<00:01, 835.07it/s]
 89%|████████▉ | 8910/10000 [00:10<00:01, 840.10it/s]
 90%|████████▉ | 8996/10000 [00:10<00:01, 845.79it/s]
 91%|█████████ | 9081/10000 [00:10<00:01, 839.86it/s]
 92%|█████████▏| 9165/10000 [00:11<00:01, 833.52it/s]
 92%|█████████▏| 9249/10000 [00:11<00:00, 830.34it/s]
 93%|█████████▎| 9333/10000 [00:11<00:00, 823.93it/s]
 94%|█████████▍| 9419/10000 [00:11<00:00, 833.50it/s]
 95%|█████████▌| 9503/10000 [00:11<00:00, 827.78it/s]
 96%|█████████▌| 9587/10000 [00:11<00:00, 829.78it/s]
 97%|█████████▋| 9670/10000 [00:11<00:00, 827.85it/s]
 98%|█████████▊| 9755/10000 [00:11<00:00, 832.94it/s]
 98%|█████████▊| 9844/10000 [00:11<00:00, 847.40it/s]
 99%|█████████▉| 9933/10000 [00:11<00:00, 858.06it/s]
100%|██████████| 10000/10000 [00:12<00:00, 777.57it/s]
Define new variables

Defining new variables...:   0%|          | 0/20 [00:00<?, ?it/s]
Defining new variables...:  10%|█         | 2/20 [00:00<00:01, 14.78it/s]
Defining new variables...:  20%|██        | 4/20 [00:00<00:01, 14.74it/s]
Defining new variables...:  30%|███       | 6/20 [00:00<00:00, 15.12it/s]
Defining new variables...:  40%|████      | 8/20 [00:00<00:00, 15.26it/s]
Defining new variables...:  50%|█████     | 10/20 [00:00<00:00, 15.26it/s]
Defining new variables...:  60%|██████    | 12/20 [00:00<00:00, 15.40it/s]
Defining new variables...:  70%|███████   | 14/20 [00:00<00:00, 15.60it/s]
Defining new variables...:  80%|████████  | 16/20 [00:01<00:00, 15.68it/s]
Defining new variables...:  90%|█████████ | 18/20 [00:01<00:00, 15.83it/s]
Defining new variables...: 100%|██████████| 20/20 [00:01<00:00, 15.86it/s]
Defining new variables...: 100%|██████████| 20/20 [00:03<00:00,  5.87it/s]
File nested_downtown_20.dat has been created.

Definition of the nest.

mu_asian = Beta('mu_asian', 1.0, 1.0, None, 0)
nest_asian = OneNestForNestedLogit(
    nest_param=mu_asian, list_of_alternatives=asian, name='asian'
)
nests = NestsForNestedLogit(
    choice_set=all_alternatives,
    tuple_of_nests=(nest_asian,),
)
The following elements do not appear in any nest and are assumed each to be alone in a separate nest: {2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 35, 36, 38, 39, 41, 42, 43, 44, 46, 48, 49, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 82, 83, 84, 85, 86, 88, 90, 93, 95, 96, 97, 99}. If it is not the intention, check the assignment of alternatives to nests.
log_probability = the_model_generation.get_nested_logit(nests)
the_biogeme = BIOGEME(biogeme_database, log_probability)
the_biogeme.model_name = MODEL_NAME
Biogeme parameters read from biogeme.toml.

Calculate the null log likelihood for reporting.

the_biogeme.calculate_null_loglikelihood(
    {i: 1 for i in range(context.total_sample_size)}
)
-29957.32273553991

Estimate the parameters

results = the_biogeme.estimate(recycle=False)
*** Initial values of the parameters are obtained from the file __nested_downtown_20.iter
Cannot read file __nested_downtown_20.iter. Statement is ignored.
Starting values for the algorithm: {}
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     beta_rating      beta_price    beta_chinese   beta_japanese     beta_korean     beta_indian     beta_french    beta_mexican   beta_lebanese  beta_ethiopian   beta_log_dist        mu_asian     Function    Relgrad   Radius      Rho
    0            0.46           -0.51          -0.097            0.12          -0.067           -0.12           0.021            0.69          0.0051          -0.042              -1             1.2      2.4e+04       0.08       10     0.92   ++
    1            0.76            -0.4            0.17               1            0.25            0.37            0.81             1.2            0.78            0.52           -0.61             1.4      2.3e+04      0.024    1e+02        1   ++
    2            0.79           -0.42            0.52             1.1            0.57            0.83            0.75             1.2            0.73            0.51           -0.62             1.7      2.3e+04      0.013    1e+03      1.1   ++
    3            0.77           -0.41            0.63             1.2            0.65             0.9            0.74             1.2            0.73            0.51            -0.6             1.9      2.3e+04     0.0033    1e+04      1.2   ++
    4            0.76           -0.41            0.69             1.3             0.7            0.97            0.74             1.2            0.72            0.51           -0.59               2      2.3e+04    0.00044    1e+05      1.1   ++
    5            0.76           -0.41             0.7             1.3            0.71            0.97            0.74             1.2            0.72            0.51           -0.59               2      2.3e+04    6.5e-06    1e+06        1   ++
    6            0.76           -0.41             0.7             1.3            0.71            0.97            0.74             1.2            0.72            0.51           -0.59               2      2.3e+04    1.8e-09    1e+06        1   ++
Optimization algorithm has converged.
Relative gradient: 1.759218152502578e-09
Cause of termination: Relative gradient = 1.8e-09 <= 6.1e-06
Number of function evaluations: 22
Number of gradient evaluations: 15
Number of hessian evaluations: 7
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 7
Proportion of Hessian calculation: 7/7 = 100.0%
Optimization time: 0:04:20.096855
Calculate second derivatives and BHHH
File nested_downtown_20.html has been generated.
File nested_downtown_20.yaml has been generated.
print(results.short_summary())
Results for model nested_downtown_20
Nbr of parameters:              12
Sample size:                    10000
Excluded data:                  0
Null log likelihood:            -29957.32
Final log likelihood:           -22943.69
Likelihood ratio test (null):           14027.27
Rho square (null):                      0.234
Rho bar square (null):                  0.234
Akaike Information Criterion:   45911.37
Bayesian Information Criterion: 45997.9
estimated_parameters = get_pandas_estimated_parameters(estimation_results=results)
display(estimated_parameters)
              Name     Value  Robust std err.  Robust t-stat.  Robust p-value
0      beta_rating  0.763599         0.015212       50.197105             0.0
1       beta_price -0.405445         0.012309      -32.938544             0.0
2     beta_chinese  0.698922         0.070766        9.876539             0.0
3    beta_japanese  1.259315         0.054086       23.283473             0.0
4      beta_korean  0.706629         0.061496       11.490687             0.0
5      beta_indian  0.972839         0.063578       15.301574             0.0
6      beta_french  0.736149         0.049137       14.981582             0.0
7     beta_mexican  1.226150         0.029064       42.187328             0.0
8    beta_lebanese  0.724601         0.049785       14.554668             0.0
9   beta_ethiopian  0.507445         0.040162       12.634854             0.0
10   beta_log_dist -0.588844         0.012760      -46.149220             0.0
11        mu_asian  2.023171         0.058728       34.449863             0.0
df, msg = compare(estimated_parameters)
print(df)
              Name  True Value  Estimated Value    T-Test
0      beta_rating        0.75         0.763599 -0.893958
1       beta_price       -0.40        -0.405445  0.442353
2     beta_chinese        0.75         0.698922  0.721785
3    beta_japanese        1.25         1.259315 -0.172222
4      beta_korean        0.75         0.706629  0.705265
5      beta_indian        1.00         0.972839  0.427217
6      beta_french        0.75         0.736149  0.281894
7     beta_mexican        1.25         1.226150  0.820596
8    beta_lebanese        0.75         0.724601  0.510179
9   beta_ethiopian        0.50         0.507445 -0.185370
10   beta_log_dist       -0.60        -0.588844 -0.874354
11        mu_asian        2.00         2.023171 -0.394547
print(msg)
Parameters not estimated: ['mu_downtown']

Total running time of the script: (9 minutes 4.900 seconds)

Gallery generated by Sphinx-Gallery