Note
Go to the end to download the full example code.
Logit¶
Estimation of a logit model using sampling of alternatives.
Michel Bierlaire Fri Jul 25 2025, 17:36:23
import pandas as pd
from IPython.core.display_functions import display
import biogeme.biogeme_logging as blog
from alternatives import ID_COLUMN, alternatives, partitions
from biogeme.biogeme import BIOGEME
from biogeme.results_processing import get_pandas_estimated_parameters
from biogeme.sampling_of_alternatives import (
ChoiceSetsGeneration,
GenerateModel,
SamplingContext,
generate_segment_size,
)
from compare import compare
from specification_sampling import V, combined_variables
ID rating price ... rest_lon distance downtown
0 0 1 4 ... 42.220972 71.735518 1.0
1 1 2 2 ... 50.549434 106.267205 0.0
2 2 3 3 ... 97.830520 136.298409 0.0
3 3 4 1 ... 69.152206 85.941147 0.0
4 4 4 3 ... 89.145620 96.773021 0.0
.. .. ... ... ... ... ... ...
95 95 4 3 ... 9.511387 84.166441 0.0
96 96 1 1 ... 92.144641 95.601366 0.0
97 97 4 2 ... 27.657518 30.440555 1.0
98 98 4 4 ... 32.303213 45.027143 1.0
99 99 4 1 ... 13.672495 25.703295 1.0
[100 rows x 16 columns]
Number of asian restaurants: 33
logger = blog.get_screen_logger(level=blog.INFO)
The data file contains several columns associated with synthetic choices. Here we arbitrarily select logit_4.
CHOICE_COLUMN = 'logit_4'
SAMPLE_SIZE = 10
PARTITION = 'asian'
MODEL_NAME = f'logit_{PARTITION}_{SAMPLE_SIZE}_alt'
FILE_NAME = f'{MODEL_NAME}.dat'
OBS_FILE = 'obs_choice.dat'
the_partition = partitions.get(PARTITION)
if the_partition is None:
raise ValueError(f'Unknown partition: {PARTITION}')
segment_sizes = generate_segment_size(SAMPLE_SIZE, the_partition.number_of_segments())
observations = pd.read_csv(OBS_FILE)
context = SamplingContext(
the_partition=the_partition,
sample_sizes=segment_sizes,
individuals=observations,
choice_column=CHOICE_COLUMN,
alternatives=alternatives,
id_column=ID_COLUMN,
biogeme_file_name=FILE_NAME,
utility_function=V,
combined_variables=combined_variables,
)
logger.info(context.reporting())
Size of the choice set: 100
Main partition: 2 segment(s) of size 33, 67
Main sample: 10: 5/33, 5/67
the_data_generation = ChoiceSetsGeneration(context=context)
the_model_generation = GenerateModel(context=context)
biogeme_database = the_data_generation.sample_and_merge(recycle=False)
Generating 10 + 0 alternatives for 10000 observations
0%| | 0/10000 [00:00<?, ?it/s]
1%|▏ | 133/10000 [00:00<00:07, 1327.65it/s]
3%|▎ | 272/10000 [00:00<00:07, 1359.92it/s]
4%|▍ | 412/10000 [00:00<00:06, 1374.06it/s]
6%|▌ | 552/10000 [00:00<00:06, 1381.44it/s]
7%|▋ | 691/10000 [00:00<00:06, 1381.40it/s]
8%|▊ | 830/10000 [00:00<00:06, 1381.47it/s]
10%|▉ | 970/10000 [00:00<00:06, 1385.73it/s]
11%|█ | 1111/10000 [00:00<00:06, 1391.77it/s]
13%|█▎ | 1253/10000 [00:00<00:06, 1399.59it/s]
14%|█▍ | 1394/10000 [00:01<00:06, 1400.87it/s]
15%|█▌ | 1537/10000 [00:01<00:06, 1406.94it/s]
17%|█▋ | 1680/10000 [00:01<00:05, 1412.75it/s]
18%|█▊ | 1822/10000 [00:01<00:05, 1409.07it/s]
20%|█▉ | 1965/10000 [00:01<00:05, 1415.24it/s]
21%|██ | 2109/10000 [00:01<00:05, 1420.05it/s]
23%|██▎ | 2252/10000 [00:01<00:05, 1416.25it/s]
24%|██▍ | 2395/10000 [00:01<00:05, 1417.77it/s]
25%|██▌ | 2538/10000 [00:01<00:05, 1419.01it/s]
27%|██▋ | 2681/10000 [00:01<00:05, 1419.35it/s]
28%|██▊ | 2824/10000 [00:02<00:05, 1420.81it/s]
30%|██▉ | 2967/10000 [00:02<00:04, 1420.65it/s]
31%|███ | 3110/10000 [00:02<00:04, 1415.35it/s]
33%|███▎ | 3252/10000 [00:02<00:04, 1412.87it/s]
34%|███▍ | 3394/10000 [00:02<00:04, 1411.34it/s]
35%|███▌ | 3536/10000 [00:02<00:04, 1409.61it/s]
37%|███▋ | 3677/10000 [00:02<00:04, 1403.46it/s]
38%|███▊ | 3818/10000 [00:02<00:04, 1399.97it/s]
40%|███▉ | 3960/10000 [00:02<00:04, 1403.13it/s]
41%|████ | 4102/10000 [00:02<00:04, 1407.91it/s]
42%|████▏ | 4245/10000 [00:03<00:04, 1411.59it/s]
44%|████▍ | 4387/10000 [00:03<00:03, 1410.20it/s]
45%|████▌ | 4529/10000 [00:03<00:03, 1402.14it/s]
47%|████▋ | 4670/10000 [00:03<00:03, 1395.62it/s]
48%|████▊ | 4810/10000 [00:03<00:03, 1390.39it/s]
50%|████▉ | 4950/10000 [00:03<00:03, 1387.77it/s]
51%|█████ | 5089/10000 [00:03<00:03, 1382.91it/s]
52%|█████▏ | 5228/10000 [00:03<00:03, 1380.56it/s]
54%|█████▎ | 5367/10000 [00:03<00:03, 1381.34it/s]
55%|█████▌ | 5506/10000 [00:03<00:03, 1381.84it/s]
56%|█████▋ | 5645/10000 [00:04<00:03, 1381.57it/s]
58%|█████▊ | 5784/10000 [00:04<00:03, 1382.01it/s]
59%|█████▉ | 5923/10000 [00:04<00:02, 1382.75it/s]
61%|██████ | 6062/10000 [00:04<00:02, 1367.83it/s]
62%|██████▏ | 6199/10000 [00:04<00:02, 1366.87it/s]
63%|██████▎ | 6336/10000 [00:04<00:02, 1367.42it/s]
65%|██████▍ | 6473/10000 [00:04<00:02, 1353.03it/s]
66%|██████▌ | 6609/10000 [00:04<00:02, 1342.56it/s]
67%|██████▋ | 6744/10000 [00:04<00:02, 1335.44it/s]
69%|██████▉ | 6879/10000 [00:04<00:02, 1336.84it/s]
70%|███████ | 7014/10000 [00:05<00:02, 1338.61it/s]
72%|███████▏ | 7150/10000 [00:05<00:02, 1342.71it/s]
73%|███████▎ | 7285/10000 [00:05<00:02, 1342.50it/s]
74%|███████▍ | 7420/10000 [00:05<00:01, 1337.77it/s]
76%|███████▌ | 7555/10000 [00:05<00:01, 1339.59it/s]
77%|███████▋ | 7690/10000 [00:05<00:01, 1341.07it/s]
78%|███████▊ | 7825/10000 [00:05<00:01, 1338.80it/s]
80%|███████▉ | 7960/10000 [00:05<00:01, 1341.31it/s]
81%|████████ | 8095/10000 [00:05<00:01, 1330.34it/s]
82%|████████▏ | 8229/10000 [00:05<00:01, 1328.50it/s]
84%|████████▎ | 8362/10000 [00:06<00:01, 1322.36it/s]
85%|████████▍ | 8495/10000 [00:06<00:01, 1323.64it/s]
86%|████████▋ | 8628/10000 [00:06<00:01, 1325.01it/s]
88%|████████▊ | 8761/10000 [00:06<00:00, 1323.08it/s]
89%|████████▉ | 8895/10000 [00:06<00:00, 1327.36it/s]
90%|█████████ | 9028/10000 [00:06<00:00, 1327.82it/s]
92%|█████████▏| 9161/10000 [00:06<00:00, 1318.78it/s]
93%|█████████▎| 9293/10000 [00:06<00:00, 1314.51it/s]
94%|█████████▍| 9425/10000 [00:06<00:00, 1313.71it/s]
96%|█████████▌| 9557/10000 [00:06<00:00, 1309.91it/s]
97%|█████████▋| 9689/10000 [00:07<00:00, 1310.85it/s]
98%|█████████▊| 9823/10000 [00:07<00:00, 1317.26it/s]
100%|█████████▉| 9956/10000 [00:07<00:00, 1320.13it/s]
100%|██████████| 10000/10000 [00:07<00:00, 1323.42it/s]
Define new variables
Defining new variables...: 0%| | 0/10 [00:00<?, ?it/s]
Defining new variables...: 20%|██ | 2/10 [00:00<00:00, 16.47it/s]
Defining new variables...: 40%|████ | 4/10 [00:00<00:00, 18.24it/s]
Defining new variables...: 60%|██████ | 6/10 [00:00<00:00, 18.76it/s]
Defining new variables...: 80%|████████ | 8/10 [00:00<00:00, 18.89it/s]
Defining new variables...: 100%|██████████| 10/10 [00:00<00:00, 19.10it/s]
Defining new variables...: 100%|██████████| 10/10 [00:00<00:00, 18.75it/s]
File logit_asian_10_alt.dat has been created.
logprob = the_model_generation.get_logit()
the_biogeme = BIOGEME(biogeme_database, logprob)
the_biogeme.modelName = MODEL_NAME
Biogeme parameters read from biogeme.toml.
/Users/bierlair/MyFiles/github/biogeme/docs/source/examples/sampling/plot_b01logit.py:84: DeprecationWarning: 'modelName' is deprecated. Please use 'model_name' instead.
the_biogeme.modelName = MODEL_NAME
Calculate the null log likelihood for reporting.
the_biogeme.calculate_null_loglikelihood({i: 1 for i in range(SAMPLE_SIZE)})
-23025.850929940458
Estimate the parameters
results = the_biogeme.estimate(recycle=False)
*** Initial values of the parameters are obtained from the file __logit_asian_10_alt.iter
Parameter values restored from __logit_asian_10_alt.iter
Starting values for the algorithm: {'beta_rating': 0.7474053406335313, 'beta_price': -0.40656630678576633, 'beta_chinese': 0.6120193026885046, 'beta_japanese': 1.1876198392575683, 'beta_korean': 0.7100322440030521, 'beta_indian': 0.9377605509978457, 'beta_french': 0.6115512270994261, 'beta_mexican': 1.2233552157690688, 'beta_lebanese': 0.6578163784697699, 'beta_ethiopian': 0.47263438214296166, 'beta_log_dist': -0.6017924240399324}
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Optimization algorithm has converged.
Relative gradient: 4.75385039567593e-07
Cause of termination: Relative gradient = 4.8e-07 <= 6.1e-06
Number of function evaluations: 1
Number of gradient evaluations: 1
Number of hessian evaluations: 0
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 0
Optimization time: 0:00:01.316658
Calculate second derivatives and BHHH
File logit_asian_10_alt~00.html has been generated.
File logit_asian_10_alt~00.yaml has been generated.
print(results.short_summary())
Results for model logit_asian_10_alt
Nbr of parameters: 11
Sample size: 10000
Excluded data: 0
Null log likelihood: -23025.85
Final log likelihood: -18389.31
Likelihood ratio test (null): 9273.078
Rho square (null): 0.201
Rho bar square (null): 0.201
Akaike Information Criterion: 36800.62
Bayesian Information Criterion: 36879.94
estimated_parameters = get_pandas_estimated_parameters(estimation_results=results)
display(estimated_parameters)
Name Value Robust std err. Robust t-stat. Robust p-value
0 beta_rating 0.747405 0.015277 48.922826 0.0
1 beta_price -0.406566 0.012767 -31.843948 0.0
2 beta_chinese 0.612019 0.050248 12.180081 0.0
3 beta_japanese 1.187620 0.046358 25.618523 0.0
4 beta_korean 0.710032 0.042348 16.766548 0.0
5 beta_indian 0.937761 0.043111 21.752391 0.0
6 beta_french 0.611551 0.061565 9.933479 0.0
7 beta_mexican 1.223355 0.036539 33.480934 0.0
8 beta_lebanese 0.657816 0.062525 10.520805 0.0
9 beta_ethiopian 0.472634 0.050153 9.423939 0.0
10 beta_log_dist -0.601792 0.015140 -39.748700 0.0
df, msg = compare(estimated_parameters)
print(df)
Name True Value Estimated Value T-Test
0 beta_rating 0.75 0.747405 0.169838
1 beta_price -0.40 -0.406566 0.514300
2 beta_chinese 0.75 0.612019 2.746018
3 beta_japanese 1.25 1.187620 1.345622
4 beta_korean 0.75 0.710032 0.943790
5 beta_indian 1.00 0.937761 1.443713
6 beta_french 0.75 0.611551 2.248835
7 beta_mexican 1.25 1.223355 0.729218
8 beta_lebanese 0.75 0.657816 1.474341
9 beta_ethiopian 0.50 0.472634 0.545648
10 beta_log_dist -0.60 -0.601792 0.118391
print(msg)
Parameters not estimated: ['mu_asian', 'mu_downtown']
Total running time of the script: (0 minutes 16.427 seconds)