Note
Go to the end to download the full example code.
Binary probit model
Example of a binary probit model. Two alternatives: Train and Car.
- author:
Michel Bierlaire, EPFL
- date:
Wed Apr 12 17:58:18 2023
import biogeme.biogeme as bio
from biogeme.expressions import Beta, bioNormalCdf, Elem, log
See the data processing script: Data preparation for Swissmetro (binary choice).
from swissmetro_binary import (
database,
CHOICE,
TRAIN_AV_SP,
CAR_AV_SP,
TRAIN_TT_SCALED,
TRAIN_COST_SCALED,
CAR_TT_SCALED,
CAR_CO_SCALED,
)
Parameters to be estimated.
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
B_TIME_CAR = Beta('B_TIME_CAR', 0, None, None, 0)
B_TIME_TRAIN = Beta('B_TIME_TRAIN', 0, None, None, 0)
B_COST_CAR = Beta('B_COST_CAR', 0, None, None, 0)
B_COST_TRAIN = Beta('B_COST_TRAIN', 0, None, None, 0)
Definition of the utility functions. We estimate a binary probit model. There are only two alternatives.
V1 = B_TIME_TRAIN * TRAIN_TT_SCALED + B_COST_TRAIN * TRAIN_COST_SCALED
V3 = ASC_CAR + B_TIME_CAR * CAR_TT_SCALED + B_COST_CAR * CAR_CO_SCALED
Associate choice probability with the numbering of alternatives. If one alternative is not available, the choice probability of the other one is 1.
logP = {
1: TRAIN_AV_SP * (CAR_AV_SP * log(bioNormalCdf(V1 - V3) + 1 - CAR_AV_SP)),
3: CAR_AV_SP * (TRAIN_AV_SP * log(bioNormalCdf(V3 - V1) + 1 - TRAIN_AV_SP)),
}
Definition of the model. This is the contribution of each observation to the log likelihood function.
logprob = Elem(logP, CHOICE)
Create the Biogeme object.
the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme.modelName = 'b23probit'
Estimate the parameters
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b23probit
Nbr of parameters: 5
Sample size: 2678
Excluded data: 8050
Final log likelihood: -906.9459
Akaike Information Criterion: 1823.892
Bayesian Information Criterion: 1853.356
pandas_results = results.get_estimated_parameters()
pandas_results
Total running time of the script: (0 minutes 0.045 seconds)