Note
Go to the end to download the full example code.
Cross-nested logit
Example of a cross-nested logit model with two nests:
one with existing alternatives (car and train),
one with public transportation alternatives (train and Swissmetro)
- author:
Michel Bierlaire, EPFL
- date:
Sun Apr 9 18:06:44 2023
import biogeme.biogeme_logging as blog
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta
from biogeme.nests import OneNestForCrossNestedLogit, NestsForCrossNestedLogit
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
database,
CHOICE,
SM_AV,
CAR_AV_SP,
TRAIN_AV_SP,
TRAIN_TT_SCALED,
TRAIN_COST_SCALED,
SM_TT_SCALED,
SM_COST_SCALED,
CAR_TT_SCALED,
CAR_CO_SCALED,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b11cnl.py')
Parameters to be estimated.
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
ASC_SM = Beta('ASC_SM', 0, None, None, 1)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)
MU_EXISTING = Beta('MU_EXISTING', 1, 1, 10, 0)
MU_PUBLIC = Beta('MU_PUBLIC', 1, 1, 10, 0)
Nest membership parameters.
ALPHA_EXISTING = Beta('ALPHA_EXISTING', 0.5, 0, 1, 0)
ALPHA_PUBLIC = 1 - ALPHA_EXISTING
Definition of the utility functions
V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED
V2 = ASC_SM + B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED
V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives
V = {1: V1, 2: V2, 3: V3}
Associate the availability conditions with the alternatives
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Definition of nests.
nest_existing = OneNestForCrossNestedLogit(
nest_param=MU_EXISTING,
dict_of_alpha={1: ALPHA_EXISTING, 2: 0.0, 3: 1.0},
name='existing',
)
nest_public = OneNestForCrossNestedLogit(
nest_param=MU_PUBLIC, dict_of_alpha={1: ALPHA_PUBLIC, 2: 1.0, 3: 0.0}, name='public'
)
nests = NestsForCrossNestedLogit(
choice_set=[1, 2, 3], tuple_of_nests=(nest_existing, nest_public)
)
The choice model is a cross-nested logit, with availability conditions.
logprob = models.logcnl(V, av, nests, CHOICE)
Create the Biogeme object
the_biogeme = bio.BIOGEME(database, logprob, number_of_threads=1)
the_biogeme.modelName = 'b11cnl'
Estimate the parameters.
results = the_biogeme.estimate()
print(results.short_summary())
pandas_results = results.get_estimated_parameters()
pandas_results