.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/swissmetro/debug.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_swissmetro_debug.py: Cross-nested logit ================== Example of a cross-nested logit model with two nests: - one with existing alternatives (car and train), - one with public transportation alternatives (train and Swissmetro) :author: Michel Bierlaire, EPFL :date: Sun Apr 9 18:06:44 2023 .. GENERATED FROM PYTHON SOURCE LINES 15-22 .. code-block:: Python import biogeme.biogeme_logging as blog import biogeme.biogeme as bio from biogeme import models from biogeme.expressions import Beta from biogeme.nests import OneNestForCrossNestedLogit, NestsForCrossNestedLogit .. GENERATED FROM PYTHON SOURCE LINES 23-24 See the data processing script: :ref:`swissmetro_data`. .. GENERATED FROM PYTHON SOURCE LINES 24-41 .. code-block:: Python from swissmetro_data import ( database, CHOICE, SM_AV, CAR_AV_SP, TRAIN_AV_SP, TRAIN_TT_SCALED, TRAIN_COST_SCALED, SM_TT_SCALED, SM_COST_SCALED, CAR_TT_SCALED, CAR_CO_SCALED, ) logger = blog.get_screen_logger(level=blog.INFO) logger.info('Example b11cnl.py') .. GENERATED FROM PYTHON SOURCE LINES 42-43 Parameters to be estimated. .. GENERATED FROM PYTHON SOURCE LINES 43-49 .. code-block:: Python ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_TIME = Beta('B_TIME', 0, None, None, 0) B_COST = Beta('B_COST', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 50-53 .. code-block:: Python MU_EXISTING = Beta('MU_EXISTING', 1, 1, 10, 0) MU_PUBLIC = Beta('MU_PUBLIC', 1, 1, 10, 0) .. GENERATED FROM PYTHON SOURCE LINES 54-55 Nest membership parameters. .. GENERATED FROM PYTHON SOURCE LINES 55-58 .. code-block:: Python ALPHA_EXISTING = Beta('ALPHA_EXISTING', 0.5, 0, 1, 0) ALPHA_PUBLIC = 1 - ALPHA_EXISTING .. GENERATED FROM PYTHON SOURCE LINES 59-60 Definition of the utility functions .. GENERATED FROM PYTHON SOURCE LINES 60-64 .. code-block:: Python V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED V2 = ASC_SM + B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 65-66 Associate utility functions with the numbering of alternatives .. GENERATED FROM PYTHON SOURCE LINES 66-68 .. code-block:: Python V = {1: V1, 2: V2, 3: V3} .. GENERATED FROM PYTHON SOURCE LINES 69-70 Associate the availability conditions with the alternatives .. GENERATED FROM PYTHON SOURCE LINES 70-72 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 73-74 Definition of nests. .. GENERATED FROM PYTHON SOURCE LINES 74-89 .. code-block:: Python nest_existing = OneNestForCrossNestedLogit( nest_param=MU_EXISTING, dict_of_alpha={1: ALPHA_EXISTING, 2: 0.0, 3: 1.0}, name='existing', ) nest_public = OneNestForCrossNestedLogit( nest_param=MU_PUBLIC, dict_of_alpha={1: ALPHA_PUBLIC, 2: 1.0, 3: 0.0}, name='public' ) nests = NestsForCrossNestedLogit( choice_set=[1, 2, 3], tuple_of_nests=(nest_existing, nest_public) ) .. GENERATED FROM PYTHON SOURCE LINES 90-91 The choice model is a cross-nested logit, with availability conditions. .. GENERATED FROM PYTHON SOURCE LINES 91-93 .. code-block:: Python logprob = models.logcnl(V, av, nests, CHOICE) .. GENERATED FROM PYTHON SOURCE LINES 94-95 Create the Biogeme object .. GENERATED FROM PYTHON SOURCE LINES 95-98 .. code-block:: Python the_biogeme = bio.BIOGEME(database, logprob, number_of_threads=1) the_biogeme.modelName = 'b11cnl' .. GENERATED FROM PYTHON SOURCE LINES 99-100 Estimate the parameters. .. GENERATED FROM PYTHON SOURCE LINES 100-102 .. code-block:: Python results = the_biogeme.estimate() .. GENERATED FROM PYTHON SOURCE LINES 103-105 .. code-block:: Python print(results.short_summary()) .. GENERATED FROM PYTHON SOURCE LINES 106-108 .. code-block:: Python pandas_results = results.get_estimated_parameters() pandas_results .. _sphx_glr_download_auto_examples_swissmetro_debug.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: debug.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: debug.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: debug.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_