Note
Go to the end to download the full example code.
Mixture with lognormal distributionΒΆ
Example of a mixture of logit models, using Monte-Carlo integration. The mixing distribution is distributed as a log normal.
Michel Bierlaire, EPFL Thu Jun 26 2025, 15:31:41
from IPython.core.display_functions import display
import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, Draws, MonteCarlo, exp, log
from biogeme.models import logit
from biogeme.results_processing import (
EstimationResults,
get_pandas_estimated_parameters,
)
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b17lognormal_mixture.py')
Example b17lognormal_mixture.py
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)
Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation.
b_time = Beta('b_time', 0, None, None, 0)
It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 1, -2, 2, 0)
Define a random parameter, log normally distributed, designed to be used for Monte-Carlo simulation.
b_time_rnd = -exp(b_time + b_time_s * Draws('b_time_rnd', 'NORMAL'))
Definition of the utility functions.
v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional to b_time_rnd, we have a logit model (called the kernel).
conditional_probability = logit(v, av, CHOICE)
We integrate over b_time_rnd using Monte-Carlo.
log_probability = log(MonteCarlo(conditional_probability))
As the objective is to illustrate the syntax, we calculate the Monte-Carlo approximation with a small number of draws.
the_biogeme = BIOGEME(database, log_probability, number_of_draws=10_000, seed=1223)
the_biogeme.model_name = '17lognormal_mixture'
Biogeme parameters read from biogeme.toml.
Estimate the parameters.
try:
results = EstimationResults.from_yaml_file(
filename='saved_results/17lognormal_mixture.yaml'
)
except FileNotFoundError:
results = the_biogeme.estimate()
print(results.short_summary())
Results for model 17lognormal_mixture
Nbr of parameters: 5
Sample size: 6768
Excluded data: 3960
Final log likelihood: -5231.272
Akaike Information Criterion: 10472.54
Bayesian Information Criterion: 10506.64
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train -0.346430 0.073266 -4.728357 2.263435e-06
1 b_time 0.575014 0.071294 8.065422 6.661338e-16
2 b_time_s 1.239151 0.128334 9.655646 0.000000e+00
3 b_cost -1.381117 0.097788 -14.123575 0.000000e+00
4 asc_car 0.173944 0.062414 2.786920 5.321162e-03
Total running time of the script: (0 minutes 26.179 seconds)