Note
Go to the end to download the full example code.
Latent class modelΒΆ
Example of a discrete mixture of logit (or latent_old class model).
Michel Bierlaire, EPFL Sat Jun 21 2025, 15:11:24
from IPython.core.display_functions import display
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, log
from biogeme.models import logit
from biogeme.results_processing import get_pandas_estimated_parameters
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_time = Beta('b_time', 0, None, None, 0)
b_cost = Beta('b_cost', 0, None, None, 0)
Class membership probability.
prob_class1 = Beta('prob_class1', 0.5, 0, 1, 0)
prob_class2 = 1 - prob_class1
Definition of the utility functions for latent_old class 1, where the time coefficient is zero.
v_train_class_1 = asc_train + b_cost * TRAIN_COST_SCALED
v_swissmetro_class_1 = asc_sm + b_cost * SM_COST_SCALED
v_car_class_1 = asc_car + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v_class_1 = {1: v_train_class_1, 2: v_swissmetro_class_1, 3: v_car_class_1}
Definition of the utility functions for latent_old class 2, whete the time coefficient is estimated.
v_train_class_2 = asc_train + b_time * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro_class_2 = asc_sm + b_time * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car_class_2 = asc_car + b_time * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v_class_2 = {1: v_train_class_2, 2: v_swissmetro_class_2, 3: v_car_class_2}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
The choice model is a discrete mixture of logit, with availability conditions
choice_probability_class_1 = logit(v_class_1, av, CHOICE)
choice_probability_class_2 = logit(v_class_2, av, CHOICE)
prob = (
prob_class1 * choice_probability_class_1 + prob_class2 * choice_probability_class_2
)
log_probability = log(prob)
Create the Biogeme object
the_biogeme = BIOGEME(database, log_probability)
the_biogeme.model_name = 'b07discrete_mixture'
Estimate the parameters
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b07discrete_mixture
Nbr of parameters: 5
Sample size: 6768
Excluded data: 3960
Final log likelihood: -5208.498
Akaike Information Criterion: 10427
Bayesian Information Criterion: 10461.1
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 prob_class1 0.250792 0.021741 11.535649 0.000000e+00
1 asc_train -0.397586 0.062033 -6.409281 1.462079e-10
2 b_cost -1.264065 0.085606 -14.766051 0.000000e+00
3 asc_car 0.124605 0.050735 2.455992 1.404965e-02
4 b_time -2.797932 0.171663 -16.298949 0.000000e+00
Total running time of the script: (0 minutes 1.411 seconds)