Assisted specificationΒΆ

Example of the estimation of several versions of the model using assisted specification algorithm. The catalog of specifications is defined in Specification of a catalog of models . Compared to Assisted specification, the number fo specifications exceeds the maximum limit, so a heuristic is applied. See Bierlaire and Ortelli, 2023 for a detailed description of the use of the assisted specification algorithm.

Michel Bierlaire, EPFL Sat Jun 28 2025, 12:25:12

import biogeme.biogeme_logging as blog
from biogeme.assisted import AssistedSpecification
from biogeme.catalog import count_number_of_specifications
from biogeme.multiobjectives import aic_bic_dimension
from biogeme.results_processing import compile_estimation_results

from plot_b22multiple_models_spec import PARETO_FILE_NAME, the_biogeme

logger = blog.get_screen_logger(blog.INFO)
logger.info('Example b22multiple_models')
Example b22multiple_models
nbr = count_number_of_specifications(the_biogeme.log_like)
if nbr is None:
    print('There are too many possible specifications to be enumerated')
else:
    print(f'There are {nbr} possible specifications')
There are 504 possible specifications

Creation of the object capturing the assisted specification algorithm. Its constructor takes three arguments:

  • the biogeme object containing the specifications and the database,

  • an object defining the objectives to minimize. Here, we use three objectives: AIC, BIC and number of parameters.

  • the name of the file where the estimated are saved, and organized into a Pareto set.

assisted_specification = AssistedSpecification(
    biogeme_object=the_biogeme,
    multi_objectives=aic_bic_dimension,
    pareto_file_name=PARETO_FILE_NAME,
)
Biogeme parameters read from biogeme.toml.
Pareto set initialized from file with 465 elements [7 Pareto] and 0 invalid elements.

The algorithm is run.

non_dominated_models = assisted_specification.run()
Biogeme parameters read from biogeme.toml.
Model with 4 unknown parameters [max: 50]
*** Estimate b07everything_000161
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.92           -0.67           -0.88           -0.49      5.4e+03      0.041       10      1.1   ++
    1           -0.73            -1.2              -1           -0.18      5.3e+03     0.0072    1e+02      1.1   ++
    2            -0.7            -1.3            -1.1           -0.16      5.3e+03    0.00018    1e+03        1   ++
    3            -0.7            -1.3            -1.1           -0.16      5.3e+03    1.1e-07    1e+03        1   ++
default_specification=asc:no_seg;train_cost_catalog:linear;train_headway_catalog:without_headway;train_tt_catalog:linear
The number of possible specifications [504] exceeds the maximum number [100]. A heuristic algorithm is applied.
*** VNS ***
asc:no_seg;train_cost_catalog:linear;train_headway_catalog:without_headway;train_tt_catalog:linear [10670.504013832326, np.float64(10697.78385743747), 4]
Initial pareto: 7
Attempt 0/100
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b07everything_000162
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0              -1           -0.17          -0.015               0               0               0           -0.53         -0.0047               0               0           -0.73           -0.37          -0.047               0               0      5.8e+03        2.4       10        1   ++
    1            -1.9            0.83            0.76               0               0               0            -1.1         -0.0052               0               0              -1            0.05           -0.39               0               0      5.5e+03       0.53    1e+02      1.1   ++
    2            -2.3             1.2             1.1               0               0               0            -1.1         -0.0055               0               0              -1           0.028           -0.47               0               0      5.5e+03      0.073    1e+03      1.1   ++
    3            -2.3             1.2             1.2               0               0               0            -1.1         -0.0055               0               0              -1           0.028           -0.48               0               0      5.5e+03     0.0018    1e+04        1   ++
    4            -2.3             1.2             1.2               0               0               0            -1.1         -0.0055               0               0              -1           0.028           -0.48               0               0      5.5e+03    1.2e-06    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b07everything_000163
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.65           0.046         -0.0052           -0.98             1.8              -1         -0.0022           -0.35           -0.18          -0.042      5.6e+03        1.6        1     0.76    +
    1           -0.98               1           0.075            -1.7            0.81            -1.1         -0.0048           -0.34            0.15           -0.11      5.2e+03       0.56       10        1   ++
    2              -1             1.1             1.1            -1.7            0.53            -1.1         -0.0055           -0.13           0.061           -0.41      5.2e+03      0.029    1e+02     0.99   ++
    3            -1.1             1.2            0.96            -1.6             0.5            -1.1         -0.0055           -0.18           0.071            -0.3      5.2e+03     0.0025    1e+03        1   ++
    4            -1.1             1.2            0.96            -1.6             0.5            -1.1         -0.0055           -0.18           0.071            -0.3      5.2e+03    5.5e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
Attempt 1/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b07everything_000164
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.65           0.022           -0.01              -1               0               0               0               0               0           -0.22            -0.2          -0.029               0               0      5.7e+03      0.045       10        1   ++
    1           -0.91             0.8            0.63            -1.5               0               0               0               0               0            0.25          -0.088           -0.72               0               0      5.5e+03      0.009    1e+02      1.1   ++
    2            -1.2             1.1             0.9            -1.6               0               0               0               0               0            0.24          -0.083           -0.77               0               0      5.5e+03      0.001    1e+03      1.1   ++
    3            -1.2             1.1            0.94            -1.6               0               0               0               0               0            0.24          -0.084           -0.77               0               0      5.5e+03    1.8e-05    1e+04        1   ++
    4            -1.2             1.1            0.94            -1.6               0               0               0               0               0            0.24          -0.084           -0.77               0               0      5.5e+03      5e-09    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b07everything_000165
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.71            0.23              -1               0               0               0               0               0           -0.31           -0.14               0               0      5.6e+03      0.044       10        1   ++
    1           -0.77             2.1            -1.6               0               0               0               0               0            0.24              -1               0               0      5.3e+03      0.023    1e+02     0.93   ++
    2           -0.88             1.9            -1.6               0               0               0               0               0            0.23            -1.3               0               0      5.2e+03    0.00045    1e+03        1   ++
    3           -0.88             1.9            -1.6               0               0               0               0               0            0.23            -1.3               0               0      5.2e+03    1.6e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
Attempt 2/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000166
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      6.1e+03       0.07       10      1.1   ++
    1      5.9e+03     0.0023    1e+02        1   ++
    2      5.9e+03    1.1e-05    1e+03        1   ++
    3      5.9e+03    2.6e-10    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 3/100
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b07everything_000167
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.5e+03        2.7       10      1.1   ++
    1      5.4e+03       0.42    1e+02      1.1   ++
    2      5.4e+03      0.038    1e+03      1.1   ++
    3      5.4e+03     0.0004    1e+04        1   ++
    4      5.4e+03    5.3e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b07everything_000168
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma asc_car_diff_wi beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.72            -0.9               1               0               0               0           -0.94         -0.0035               0               0           -0.78           -0.29           -0.18               0               0      5.3e+03        2.9       10      1.1   ++
    1              -1            -1.1             1.9               0               0               0           -0.99         -0.0058               0               0            -1.2            0.25           -0.14               0               0      5.2e+03       0.61    1e+02      1.1   ++
    2              -1            -1.2             2.1               0               0               0              -1         -0.0068               0               0            -1.2            0.25           -0.14               0               0      5.2e+03       0.05    1e+03      1.1   ++
    3              -1            -1.2             2.1               0               0               0              -1          -0.007               0               0            -1.2            0.25           -0.14               0               0      5.2e+03    0.00038    1e+04        1   ++
    4              -1            -1.2             2.1               0               0               0              -1          -0.007               0               0            -1.2            0.25           -0.14               0               0      5.2e+03    2.2e-08    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000169
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.52           -0.82            0.23         -0.0093              -1              -1         -0.0023           -0.48           -0.18           -0.18          -0.049      5.3e+03        2.5       10      1.1   ++
    1          -0.091            -1.1            0.73            0.32            -2.9              -1         -0.0049           -0.48            0.27            0.11           -0.11      5.1e+03       0.42    1e+02      1.1   ++
    2           -0.13            -1.1            0.93             0.5            -3.3            -1.1         -0.0058           -0.48            0.31           0.082           -0.14      5.1e+03       0.04    1e+03        1   ++
    3           -0.14            -1.1            0.96            0.53            -3.3            -1.1         -0.0059           -0.49            0.31           0.082           -0.14      5.1e+03    0.00046    1e+04        1   ++
    4           -0.14            -1.1            0.96            0.53            -3.3            -1.1         -0.0059           -0.49            0.31           0.082           -0.14      5.1e+03    6.7e-07    1e+04        1   ++
Considering neighbor 2/20 for current solution
Attempt 4/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b07everything_000170
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.57           -0.95           -0.86               2           -0.88          0.0074            -0.2           0.092      5.8e+03        2.6        1     0.68    +
    1           0.056           -0.95           -0.49             1.8            -1.9         -0.0081           -0.56           0.079      5.3e+03       0.43       10     0.99   ++
    2           0.056           -0.95           -0.49             1.8            -1.9         -0.0081           -0.56           0.079      5.3e+03       0.43        5 -2.7e+03    -
    3           0.056           -0.95           -0.49             1.8            -1.9         -0.0081           -0.56           0.079      5.3e+03       0.43      2.5      -16    -
    4           0.056           -0.95           -0.49             1.8            -1.9         -0.0081           -0.56           0.079      5.3e+03       0.43      1.2    -0.53    -
    5          -0.035            -1.3            -1.3            0.56            -2.2          0.0026           -0.35            0.51      5.1e+03       0.48      1.2     0.83    +
    6            0.63            -1.3            -1.7            0.38            -2.3         -0.0057           -0.37            0.34      5.1e+03       0.14       12     0.99   ++
    7            0.63            -1.3            -1.7            0.42            -2.4         -0.0057           -0.36            0.33      5.1e+03     0.0024  1.2e+02     0.99   ++
    8            0.63            -1.3            -1.7            0.42            -2.4         -0.0057           -0.36            0.33      5.1e+03    2.3e-07  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 19 unknown parameters [max: 50]
*** Estimate b07everything_000171
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03        2.9       10        1   ++
    1      5.7e+03       0.32    1e+02      1.1   ++
    2      5.7e+03      0.014    1e+03        1   ++
    3      5.7e+03    2.1e-05    1e+04        1   ++
    4      5.7e+03    4.6e-11    1e+04        1   ++
Considering neighbor 1/20 for current solution
Attempt 5/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b07everything_000172
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost     lambda_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6       10        1   ++
    1           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6      2.1 -2.1e+02    -
    2           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6        1     -2.6    -
    3           -0.39            -1.5               0               0               0            -1.3            0.24         -0.0064               0               0            -1.3           0.078               0               0      5.5e+03       0.58       10        1   ++
    4           -0.51            -1.4               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.22               0               0      5.5e+03      0.022    1e+02     0.97   ++
    5           -0.52            -1.3               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.21               0               0      5.5e+03    5.2e-05    1e+03        1   ++
    6           -0.52            -1.3               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.21               0               0      5.5e+03    1.4e-09    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 6/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b07everything_000173
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.55           -0.88            -0.9             1.8              -1               1           0.006           -0.27          -0.004      5.6e+03        2.2        1     0.78    +
    1            0.45            -1.1            -1.1             1.3           -0.97            0.49         -0.0078           -0.68            0.34      5.3e+03       0.47       10      1.1   ++
    2            0.45            -1.1            -1.1             1.3           -0.97            0.49         -0.0078           -0.68            0.34      5.3e+03       0.47        1     -2.4    -
    3            0.52            -1.1            -1.9            0.27            -1.3            0.69         -0.0043           -0.54            0.46      5.2e+03      0.039        1     0.68    +
    4            0.57            -1.3            -1.6            0.36            -1.1            0.62         -0.0058           -0.51            0.31      5.2e+03      0.014       10     0.99   ++
    5            0.56            -1.3            -1.6            0.39            -1.1            0.56         -0.0058           -0.53            0.32      5.2e+03    0.00011    1e+02     0.98   ++
    6            0.56            -1.3            -1.6            0.39            -1.1            0.56         -0.0058           -0.53            0.32      5.2e+03    8.6e-07    1e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000174
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.68           0.065          -0.004              -1             1.8           -0.88               1         -0.0015           -0.35           -0.19          -0.046      5.7e+03        1.6        1      0.7    +
    1           -0.96             1.1           0.085            -1.4             1.1              -1            0.73         -0.0064           -0.33           -0.04           -0.16      5.3e+03       0.57       10      1.1   ++
    2           -0.74             1.1               1            -2.1            0.28            -1.1             0.7         -0.0056            0.05            -0.1            -0.7      5.3e+03      0.069       10     0.69    +
    3            -1.2             1.2            0.95            -1.5            0.38            -1.1            0.55         -0.0055            -0.2          -0.059           -0.63      5.2e+03     0.0064    1e+02     0.97   ++
    4            -1.1             1.2            0.95            -1.6            0.44            -1.1            0.55         -0.0055            -0.2          -0.062           -0.62      5.2e+03    0.00054    1e+03     0.96   ++
    5            -1.1             1.2            0.95            -1.6            0.44            -1.1            0.55         -0.0055            -0.2          -0.062           -0.62      5.2e+03    1.1e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
Attempt 7/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b07everything_000175
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.72            0.65           -0.95               2               0               0               0         -0.0015               0               0           -0.41            -0.3               0               0        6e+03        2.3        1     0.54    +
    1           -0.93             1.6           -0.38             1.9               0               0               0         -0.0073               0               0           -0.15           -0.73               0               0      5.5e+03       0.17        1     0.86    +
    2            -1.2             1.8           -0.83            0.89               0               0               0         -0.0047               0               0           -0.24           -0.85               0               0      5.3e+03      0.026       10        1   ++
    3           -0.51             1.8            -1.7           -0.05               0               0               0         -0.0059               0               0            0.19            -1.3               0               0      5.2e+03       0.12       10     0.49    +
    4           -0.51             1.9            -1.7            0.32               0               0               0          -0.006               0               0            0.18            -1.4               0               0      5.2e+03      0.015    1e+02        1   ++
    5            -0.6             1.9            -1.6            0.34               0               0               0          -0.006               0               0            0.12            -1.3               0               0      5.2e+03    0.00078    1e+03     0.98   ++
    6            -0.6             1.9            -1.6            0.34               0               0               0          -0.006               0               0            0.12            -1.3               0               0      5.2e+03    8.4e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 8/100
Biogeme parameters read from biogeme.toml.
Model with 18 unknown parameters [max: 50]
*** Estimate b07everything_000176
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0        6e+03      0.073       10      1.1   ++
    1      5.5e+03      0.031    1e+02     0.98   ++
    2      5.5e+03     0.0011    1e+03        1   ++
    3      5.5e+03    4.7e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 9/100
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b07everything_000177
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.74           -0.73              -1         -0.0011            -0.3      5.4e+03        2.3       10      1.1   ++
    1           -0.54            -1.2            -2.1         -0.0044           -0.19      5.3e+03       0.25    1e+02      1.1   ++
    2           -0.49            -1.2            -2.3         -0.0053           -0.21      5.3e+03     0.0056    1e+03        1   ++
    3           -0.48            -1.2            -2.3         -0.0053           -0.21      5.3e+03     0.0011    1e+04        1   ++
    4           -0.48            -1.2            -2.3         -0.0053           -0.21      5.3e+03    0.00014    1e+05        1   ++
    5           -0.48            -1.2            -2.3         -0.0053           -0.21      5.3e+03    1.2e-05    1e+06        1   ++
    6           -0.48            -1.2            -2.3         -0.0053           -0.21      5.3e+03    1.4e-08    1e+06        1   ++
Considering neighbor 0/20 for current solution
Attempt 10/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b07everything_000178
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.53             0.2              -1           -0.23               1         -0.0043           -0.53           -0.13      5.5e+03        2.5       10        1   ++
    1           -0.53             0.2              -1           -0.23               1         -0.0043           -0.53           -0.13      5.5e+03        2.5      4.5   -3e+05    -
    2           -0.53             0.2              -1           -0.23               1         -0.0043           -0.53           -0.13      5.5e+03        2.5      2.2 -1.1e+02    -
    3           -0.53             0.2              -1           -0.23               1         -0.0043           -0.53           -0.13      5.5e+03        2.5      1.1     -3.7    -
    4           -0.75             1.3            -1.6            -1.2             1.1         -0.0031           -0.22           -0.49      5.1e+03       0.22       11        1   ++
    5           -0.75             1.3            -1.6            -1.2             1.1         -0.0031           -0.22           -0.49      5.1e+03       0.22      1.1     -6.5    -
    6           -0.73             2.4            -1.7            -1.4            0.48          -0.007           -0.27           -0.99        5e+03       0.27       11        1   ++
    7           -0.94             2.2            -1.6            -1.7           -0.12         -0.0061           -0.31            -1.8      4.9e+03      0.021       11     0.79    +
    8           -0.93             2.2            -1.6            -1.5          -0.069         -0.0061           -0.28            -1.8      4.9e+03    0.00089  1.1e+02        1   ++
    9           -0.92             2.2            -1.6            -1.5          -0.038         -0.0061           -0.28            -1.9      4.9e+03    4.3e-05  1.1e+03        1   ++
   10           -0.92             2.2            -1.6            -1.5          -0.038         -0.0061           -0.28            -1.9      4.9e+03    3.9e-07  1.1e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 11/100
Biogeme parameters read from biogeme.toml.
Model with 20 unknown parameters [max: 50]
*** Estimate b07everything_000179
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03      0.044       10      1.1   ++
    1      5.4e+03       0.01    1e+02      1.1   ++
    2      5.4e+03    0.00066    1e+03        1   ++
    3      5.4e+03    3.5e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 18 unknown parameters [max: 50]
*** Estimate b07everything_000180
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03      0.037       10        1   ++
    1      5.7e+03     0.0061    1e+02      1.1   ++
    2      5.7e+03    0.00019    1e+03        1   ++
    3      5.7e+03    1.9e-07    1e+03        1   ++
Considering neighbor 1/20 for current solution
Attempt 12/100
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b07everything_000181
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.33           -0.81           -0.63           -0.89           -0.52          -0.039      5.3e+03      0.043       10      1.1   ++
    1           0.038            -1.2            -1.2              -1           -0.47            0.28      5.2e+03     0.0093    1e+02      1.1   ++
    2           0.089            -1.2            -1.2            -1.1           -0.46            0.31      5.2e+03    0.00033    1e+03        1   ++
    3           0.089            -1.2            -1.2            -1.1           -0.46            0.31      5.2e+03    4.1e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 13/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000182
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL         asc_car beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.91               0               0               0           -0.42         -0.0075               0               0              -1               0               0      5.8e+03        2.5       10        1   ++
    1            -1.3               0               0               0           -0.91         -0.0058               0               0           -0.89               0               0      5.6e+03      0.098    1e+02        1   ++
    2            -1.4               0               0               0           -0.94         -0.0055               0               0           -0.91               0               0      5.6e+03     0.0014    1e+03        1   ++
    3            -1.4               0               0               0           -0.94         -0.0055               0               0           -0.91               0               0      5.6e+03    2.2e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 14/100
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b07everything_000183
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.72            0.11         -0.0034           -0.97               2            -0.8         -0.0012           -0.29           -0.15           -0.05      5.9e+03        1.9        1     0.55    +
    1           -0.93            0.75           0.059           -0.68             1.7            -1.8          -0.008           -0.26          0.0067           -0.11      5.4e+03      0.021       10        1   ++
    2           -0.93            0.75           0.059           -0.68             1.7            -1.8          -0.008           -0.26          0.0067           -0.11      5.4e+03      0.021      4.1 -6.6e+02    -
    3           -0.93            0.75           0.059           -0.68             1.7            -1.8          -0.008           -0.26          0.0067           -0.11      5.4e+03      0.021        2      -12    -
    4           -0.93            0.75           0.059           -0.68             1.7            -1.8          -0.008           -0.26          0.0067           -0.11      5.4e+03      0.021        1    0.069    -
    5            -1.3            0.83            0.16            -1.5            0.72            -2.1        -0.00036           -0.24            0.33           -0.15      5.2e+03       0.19       10     0.97   ++
    6              -1             1.1             1.1            -1.7            0.43            -2.3         -0.0057           -0.14            0.16           -0.31      5.1e+03       0.12    1e+02     0.93   ++
    7            -1.1             1.2            0.95            -1.6            0.46            -2.4         -0.0055           -0.17            0.16           -0.23      5.1e+03     0.0019    1e+03        1   ++
    8            -1.1             1.2            0.95            -1.6            0.46            -2.4         -0.0055           -0.17            0.16           -0.23      5.1e+03    1.6e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 15/100
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b07everything_000184
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.45           -0.67            0.68           -0.96               2           -0.96               1           -0.51           -0.28           -0.32      5.7e+03       0.13        1      0.6    +
    1           -0.68            -1.3             1.7           -0.62             1.7           -0.84            0.66           -0.49            0.16           -0.78      5.1e+03      0.015       10      1.1   ++
    2           -0.68            -1.3             1.7           -0.62             1.7           -0.84            0.66           -0.49            0.16           -0.78      5.1e+03      0.015        5 -3.1e+03    -
    3           -0.68            -1.3             1.7           -0.62             1.7           -0.84            0.66           -0.49            0.16           -0.78      5.1e+03      0.015      2.5      -28    -
    4           -0.68            -1.3             1.7           -0.62             1.7           -0.84            0.66           -0.49            0.16           -0.78      5.1e+03      0.015      1.2    -0.62    -
    5           -0.85            -1.2             1.9            -1.3             0.4            -1.6            0.41            -0.6             0.3            -1.1      4.9e+03      0.033      1.2      0.9    +
    6           -0.36            -1.1             2.1            -1.6            0.22            -1.5            0.12           -0.55            0.46            -1.8      4.8e+03     0.0056       12     0.99   ++
    7           -0.38            -1.1             2.1            -1.6            0.22            -1.5           0.032           -0.56            0.48              -2      4.8e+03    0.00028  1.2e+02        1   ++
    8           -0.38            -1.1             2.1            -1.6            0.22            -1.5           0.032           -0.56            0.48              -2      4.8e+03    2.1e-06  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b07everything_000185
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.52           -0.79            0.53           -0.88             1.7              -1           0.003           -0.29          -0.051           -0.22      5.3e+03        2.3        1     0.88    +
    1           -0.29              -1             1.5            -1.1               1              -1         -0.0043           -0.51           0.087           -0.35      4.9e+03        0.6       10      1.1   ++
    2            0.43            -1.1             1.9            -2.2          -0.078            -1.1         -0.0066           -0.37            0.46           -0.44      4.9e+03       0.14       10     0.21    +
    3            0.15            -1.2               2            -1.8            0.17            -1.1         -0.0066           -0.51             0.4           -0.44      4.9e+03     0.0078    1e+02      1.1   ++
    4            0.11            -1.2               2            -1.7            0.33            -1.1         -0.0067           -0.54            0.41           -0.43      4.9e+03     0.0043    1e+03        1   ++
    5           0.098            -1.2               2            -1.7            0.34            -1.1         -0.0067           -0.55            0.41           -0.43      4.9e+03    0.00011    1e+04        1   ++
    6           0.098            -1.2               2            -1.7            0.34            -1.1         -0.0067           -0.55            0.41           -0.43      4.9e+03    2.2e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Attempt 16/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000186
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.5e+03      0.039       10      1.1   ++
    1      5.4e+03      0.009    1e+02      1.1   ++
    2      5.4e+03    0.00054    1e+03      1.1   ++
    3      5.4e+03    4.8e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 17/100
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b07everything_000187
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost     lambda_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.69              -1             1.7           -0.67               1           -0.55      5.8e+03      0.073        1     0.71    +
    1           -0.69            -1.7            0.75            -1.3            0.87           -0.33      5.4e+03      0.053       10     0.98   ++
    2           -0.55            -1.5            0.55            -1.1            0.68           -0.09      5.4e+03     0.0023    1e+02        1   ++
    3           -0.56            -1.6            0.46            -1.1            0.58            -0.1      5.4e+03     0.0003    1e+03        1   ++
    4           -0.56            -1.6            0.46            -1.1            0.58            -0.1      5.4e+03    5.4e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 18/100
Considering neighbor 0/20 for current solution
Attempt 19/100
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b07everything_000188
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost     lambda_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067       10     0.92   ++
    1           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067      4.1 -1.3e+05    -
    2           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067      2.1 -1.2e+02    -
    3           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067        1     -9.9    -
    4           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067     0.52    -0.53    -
    5            -0.7            -1.2           -0.62             1.7           -0.18      5.5e+03     0.0091      5.2      1.1   ++
    6            -0.7            -1.2           -0.62             1.7           -0.18      5.5e+03     0.0091      2.5 -5.6e+02    -
    7            -0.7            -1.2           -0.62             1.7           -0.18      5.5e+03     0.0091      1.3     -5.7    -
    8           -0.56            -1.3            -1.2            0.46           -0.14      5.4e+03      0.012      1.3     0.57    +
    9           -0.78            -1.2            -1.1             0.6           -0.26      5.4e+03    0.00052       13        1   ++
   10           -0.78            -1.2            -1.1            0.63           -0.26      5.4e+03    2.1e-05  1.3e+02        1   ++
   11           -0.78            -1.2            -1.1            0.63           -0.26      5.4e+03      1e-08  1.3e+02        1   ++
Considering neighbor 0/20 for current solution
Attempt 20/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b07everything_000189
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0            -0.5           -0.77           -0.86             1.7              -1          0.0035           -0.28           -0.05      5.4e+03        2.1        1     0.87    +
    1            0.27            -1.3            -1.6            0.68            -1.2         -0.0017           -0.54            0.39      5.1e+03       0.41       10     0.92   ++
    2            0.69            -1.3            -1.7            0.44            -1.1         -0.0059            -0.4            0.32      5.1e+03      0.022    1e+02     0.97   ++
    3            0.65            -1.3            -1.7            0.45            -1.1         -0.0058            -0.4             0.3      5.1e+03    2.5e-05    1e+03        1   ++
    4            0.65            -1.3            -1.7            0.45            -1.1         -0.0058            -0.4             0.3      5.1e+03    4.8e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 21/100
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b07everything_000190
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.37           -0.69           -0.63              -1           -0.37           -0.11      5.4e+03      0.038       10      1.1   ++
    1         0.00095            -1.1            -1.1            -2.1           -0.39            0.28      5.2e+03      0.011    1e+02      1.1   ++
    2           0.052            -1.2            -1.2            -2.3           -0.43            0.33      5.1e+03    0.00047    1e+03        1   ++
    3           0.052            -1.2            -1.2            -2.3           -0.43            0.33      5.1e+03      9e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 22/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b07everything_000191
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.37           -0.65              -1           -0.83          0.0008            -0.3          -0.073      5.3e+03        2.4       10      1.1   ++
    1             0.6            -1.3            -1.6              -1         -0.0046           -0.37            0.25      5.2e+03       0.49    1e+02      1.1   ++
    2            0.68            -1.4            -1.7              -1         -0.0057           -0.36            0.25      5.2e+03      0.021    1e+03        1   ++
    3            0.68            -1.4            -1.7              -1         -0.0057           -0.35            0.24      5.2e+03    2.6e-05    1e+04        1   ++
    4            0.68            -1.4            -1.7              -1         -0.0057           -0.35            0.24      5.2e+03    1.1e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b07everything_000192
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.58           -0.83             0.7              -1           -0.96        -0.00091           -0.53            -0.2           -0.22      5.2e+03        2.6       10      1.1   ++
    1          -0.099           -0.98             1.8            -2.8              -1          -0.005           -0.54            0.34           -0.38      4.9e+03       0.69    1e+02      1.1   ++
    2            0.04            -1.1             1.9            -3.2            -1.1         -0.0066           -0.58            0.41           -0.42      4.9e+03      0.057    1e+03      1.1   ++
    3           0.049            -1.2               2            -3.2            -1.1         -0.0068           -0.59            0.41           -0.43      4.9e+03    0.00035    1e+04        1   ++
    4           0.049            -1.2               2            -3.2            -1.1         -0.0068           -0.59            0.41           -0.43      4.9e+03    9.9e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Attempt 23/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b07everything_000193
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068       10     0.94   ++
    1           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068      4.2 -1.4e+05    -
    2           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068      2.1 -1.3e+02    -
    3           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068      1.1     -9.9    -
    4           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068     0.53    -0.41    -
    5          -0.077           -0.94            -1.1           -0.59             1.8           -0.53            0.38      5.3e+03     0.0089      5.3      1.1   ++
    6          -0.077           -0.94            -1.1           -0.59             1.8           -0.53            0.38      5.3e+03     0.0089      2.6   -6e+02    -
    7          -0.077           -0.94            -1.1           -0.59             1.8           -0.53            0.38      5.3e+03     0.0089      1.3     -5.5    -
    8            0.33            -1.4            -1.1            -1.1            0.44           -0.54            0.33      5.3e+03      0.021      1.3     0.67    +
    9           0.014            -1.2            -1.1            -1.1            0.61            -0.6            0.33      5.3e+03    0.00094       13        1   ++
   10           0.014            -1.2            -1.1            -1.1            0.61            -0.6            0.33      5.3e+03    4.5e-06       13        1   ++
Considering neighbor 0/20 for current solution
Attempt 24/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b07everything_000194
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_wi beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.91            0.23               0               0               0           -0.22         -0.0078               0               0              -1            -0.2               0               0      5.8e+03        2.6       10        1   ++
    1            -1.8             2.3               0               0               0            -1.4         -0.0061               0               0           -0.98            -1.2               0               0      5.2e+03       0.85    1e+02     0.99   ++
    2              -2             2.3               0               0               0            -1.5         -0.0063               0               0            -1.1            -1.6               0               0      5.2e+03      0.044    1e+03        1   ++
    3              -2             2.3               0               0               0            -1.5         -0.0064               0               0            -1.1            -1.6               0               0      5.2e+03    0.00035    1e+04        1   ++
    4              -2             2.3               0               0               0            -1.5         -0.0064               0               0            -1.1            -1.6               0               0      5.2e+03    1.5e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 25/100
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b07everything_000195
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03        2.5       10        1   ++
    1      5.2e+03       0.86    1e+02        1   ++
    2      5.2e+03      0.085    1e+03      1.1   ++
    3      5.2e+03      0.002    1e+04        1   ++
    4      5.2e+03    1.4e-06    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 18 unknown parameters [max: 50]
*** Estimate b07everything_000196
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0        6e+03        2.3        1     0.54    +
    1      5.4e+03       0.19       10        1   ++
    2      5.4e+03       0.19        5   -3e+03    -
    3      5.4e+03       0.19      2.5      -24    -
    4      5.4e+03       0.19      1.2    -0.64    -
    5      5.2e+03        0.1      1.2     0.83    +
    6      5.2e+03      0.079       12     0.96   ++
    7      5.2e+03     0.0015  1.2e+02        1   ++
    8      5.2e+03    1.6e-07  1.2e+02        1   ++
Considering neighbor 1/20 for current solution
Attempt 26/100
Considering neighbor 0/20 for current solution
Attempt 27/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b07everything_000197
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost     lambda_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6       10        1   ++
    1           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6      2.1 -2.1e+02    -
    2           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6        1     -2.6    -
    3           -0.39            -1.5               0               0               0            -1.3            0.24         -0.0064               0               0            -1.3           0.078               0               0      5.5e+03       0.58       10        1   ++
    4           -0.51            -1.4               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.22               0               0      5.5e+03      0.022    1e+02     0.97   ++
    5           -0.52            -1.3               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.21               0               0      5.5e+03    5.2e-05    1e+03        1   ++
    6           -0.52            -1.3               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.21               0               0      5.5e+03    1.4e-09    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 28/100
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b07everything_000198
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.5e+03        2.6       10        1   ++
    1      5.2e+03       0.87    1e+02        1   ++
    2      5.2e+03      0.069    1e+03      1.1   ++
    3      5.2e+03     0.0012    1e+04        1   ++
    4      5.2e+03    4.5e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 29/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000199
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.94           -0.11          -0.014            0.52              -1           -0.65         -0.0031           -0.59           -0.29          -0.046           -0.24      5.4e+03        2.5       10        1   ++
    1            -1.2             0.4            0.18               2            -2.6            -1.3          -0.005           -0.36           0.097           -0.23            -1.4      4.9e+03       0.96    1e+02        1   ++
    2            -1.4            0.65            0.41             1.9            -2.9            -1.5         -0.0061           -0.36           0.082           -0.43            -1.8      4.9e+03      0.076    1e+03      1.1   ++
    3            -1.4             0.7            0.47               2            -2.9            -1.5         -0.0062           -0.36            0.08           -0.45            -1.9      4.9e+03     0.0016    1e+04        1   ++
    4            -1.4             0.7            0.47               2            -2.9            -1.5         -0.0062           -0.36            0.08           -0.45            -1.9      4.9e+03    8.6e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 30/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000200
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      6.1e+03          2        1     0.51    +
    1      5.7e+03        0.5       10     0.92   ++
    2      5.7e+03        0.5        5 -2.2e+03    -
    3      5.7e+03        0.5      2.5      -18    -
    4      5.7e+03        0.5      1.2    -0.14    -
    5      5.5e+03       0.19      1.2     0.86    +
    6      5.4e+03      0.053       12        1   ++
    7      5.4e+03    0.00089  1.2e+02     0.97   ++
    8      5.4e+03    2.4e-06  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b07everything_000201
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0              -1             0.4            0.04           -0.65               0               0               0               0               0           -0.29          -0.071           -0.12               0               0      5.6e+03      0.037       10      1.1   ++
    1            -1.2            0.89            0.71            -1.1               0               0               0               0               0           0.045          -0.044           -0.64               0               0      5.5e+03     0.0076    1e+02      1.1   ++
    2            -1.4             1.1            0.89            -1.1               0               0               0               0               0           0.057          -0.046           -0.68               0               0      5.5e+03    0.00067    1e+03      1.1   ++
    3            -1.4             1.1            0.91            -1.1               0               0               0               0               0           0.058          -0.046           -0.69               0               0      5.5e+03    6.1e-06    1e+04        1   ++
    4            -1.4             1.1            0.91            -1.1               0               0               0               0               0           0.058          -0.046           -0.69               0               0      5.5e+03    5.2e-10    1e+04        1   ++
Considering neighbor 1/20 for current solution
Attempt 31/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000202
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03      0.038       10      1.1   ++
    1      5.3e+03      0.013    1e+02      1.1   ++
    2      5.3e+03     0.0006    1e+03        1   ++
    3      5.3e+03    3.1e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b07everything_000203
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.92              -1           -0.58         -0.0028           -0.66      5.6e+03        2.5       10        1   ++
    1           -0.53            -2.4            -2.3         -0.0062           -0.22      5.3e+03        0.4    1e+02        1   ++
    2           -0.27            -3.3            -2.3         -0.0053          -0.059      5.2e+03     0.0023    1e+03        1   ++
    3           -0.26            -3.3            -2.4         -0.0053          -0.055      5.2e+03     0.0058    1e+04        1   ++
    4           -0.26            -3.3            -2.4         -0.0053          -0.055      5.2e+03      3e-06    1e+04        1   ++
Considering neighbor 1/20 for current solution
Attempt 32/100
Considering neighbor 0/20 for current solution
Attempt 33/100
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b07everything_000204
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.97            0.51            0.33           -0.63               0               0               0         -0.0026               0               0           -0.47             0.1           -0.43               0               0      5.6e+03        2.7       10      1.1   ++
    1              -1            0.91            0.71            -1.1               0               0               0         -0.0047               0               0          -0.042          -0.054           -0.68               0               0      5.5e+03       0.35    1e+02      1.1   ++
    2            -1.2             1.1            0.89            -1.1               0               0               0         -0.0053               0               0           -0.05          -0.044           -0.68               0               0      5.5e+03      0.026    1e+03        1   ++
    3            -1.2             1.1            0.91            -1.1               0               0               0         -0.0054               0               0           -0.05          -0.044           -0.68               0               0      5.5e+03    0.00018    1e+04        1   ++
    4            -1.2             1.1            0.91            -1.1               0               0               0         -0.0054               0               0           -0.05          -0.044           -0.68               0               0      5.5e+03    1.1e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 34/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b07everything_000205
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.63            -0.9               0               0               0           -0.97          -0.003               0               0              -1          -0.032               0               0      5.6e+03        2.7       10      1.1   ++
    1           -0.55            -1.3               0               0               0            -1.1         -0.0052               0               0            -1.2            0.23               0               0      5.5e+03       0.33    1e+02      1.1   ++
    2           -0.53            -1.3               0               0               0            -1.1         -0.0059               0               0            -1.2            0.23               0               0      5.5e+03      0.013    1e+03        1   ++
    3           -0.53            -1.3               0               0               0            -1.1         -0.0059               0               0            -1.2            0.23               0               0      5.5e+03    1.8e-05    1e+04        1   ++
    4           -0.53            -1.3               0               0               0            -1.1         -0.0059               0               0            -1.2            0.23               0               0      5.5e+03    3.7e-11    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 35/100
Biogeme parameters read from biogeme.toml.
Model with 20 unknown parameters [max: 50]
*** Estimate b07everything_000206
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0        6e+03      0.041       10        1   ++
    1      5.8e+03      0.023    1e+02      1.1   ++
    2      5.8e+03     0.0038    1e+03      1.1   ++
    3      5.8e+03    0.00012    1e+04        1   ++
    4      5.8e+03    1.3e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 36/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000207
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.43           -0.72            0.31          -0.011            -0.9               2           -0.84           -0.31            -0.1           -0.23          -0.046      5.8e+03       0.12        1      0.6    +
    1           -0.69            -1.3            0.68           0.032            -0.7             1.6            -1.8           -0.41            0.11           0.024           -0.11      5.2e+03      0.016       10      1.1   ++
    2           -0.69            -1.3            0.68           0.032            -0.7             1.6            -1.8           -0.41            0.11           0.024           -0.11      5.2e+03      0.016        5   -4e+03    -
    3           -0.69            -1.3            0.68           0.032            -0.7             1.6            -1.8           -0.41            0.11           0.024           -0.11      5.2e+03      0.016      2.5      -24    -
    4           -0.69            -1.3            0.68           0.032            -0.7             1.6            -1.8           -0.41            0.11           0.024           -0.11      5.2e+03      0.016      1.2     -1.4    -
    5           -0.77            -1.2            0.78            0.11            -1.4            0.35            -2.2           -0.45            0.24             0.3           -0.13      5.1e+03      0.033      1.2     0.78    +
    6           -0.45            -1.1               1            0.71            -1.7            0.43            -2.4            -0.4            0.36            0.18          -0.019        5e+03     0.0049       12     0.91   ++
    7           -0.44            -1.1            0.96            0.56            -1.7            0.41            -2.4            -0.4            0.37            0.18         -0.0041        5e+03     0.0001  1.2e+02        1   ++
    8           -0.44            -1.1            0.96            0.56            -1.7            0.41            -2.4            -0.4            0.37            0.18         -0.0041        5e+03    9.7e-08  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
Attempt 37/100
Biogeme parameters read from biogeme.toml.
Model with 22 unknown parameters [max: 50]
*** Estimate b07everything_000208
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03      0.041       10        1   ++
    1      5.5e+03      0.053    1e+02     0.97   ++
    2      5.5e+03     0.0043    1e+03        1   ++
    3      5.5e+03    0.00016    1e+04        1   ++
    4      5.5e+03    2.1e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 38/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b07everything_000209
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0          -0.083           -0.77           -0.62               0               0               0         -0.0027               0               0           -0.47           0.023               0               0      5.6e+03        2.9       10      1.1   ++
    1            0.34            -1.1            -1.1               0               0               0          -0.005               0               0           -0.38            0.33               0               0      5.4e+03       0.37    1e+02      1.1   ++
    2            0.41            -1.2            -1.1               0               0               0         -0.0057               0               0           -0.39            0.32               0               0      5.4e+03      0.018    1e+03        1   ++
    3            0.41            -1.2            -1.1               0               0               0         -0.0057               0               0           -0.39            0.32               0               0      5.4e+03    3.6e-05    1e+04        1   ++
    4            0.41            -1.2            -1.1               0               0               0         -0.0057               0               0           -0.39            0.32               0               0      5.4e+03    1.4e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 39/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b07everything_000210
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.68            0.55              -1             1.8           -0.74         -0.0021           -0.46           -0.27      5.6e+03          2        1     0.69    +
    1           -0.93             1.6           -0.93             1.3            -1.2         -0.0064           -0.47           -0.74      5.1e+03       0.24       10      1.1   ++
    2           -0.93             1.6           -0.93             1.3            -1.2         -0.0064           -0.47           -0.74      5.1e+03       0.24      4.9 -2.4e+03    -
    3           -0.93             1.6           -0.93             1.3            -1.2         -0.0064           -0.47           -0.74      5.1e+03       0.24      2.5      -34    -
    4           -0.93             1.6           -0.93             1.3            -1.2         -0.0064           -0.47           -0.74      5.1e+03       0.24      1.2     -2.9    -
    5            -1.1             2.5            -1.9            0.12            -1.6          -0.003           -0.15            -1.4        5e+03      0.032      1.2     0.78    +
    6           -0.87             2.2            -1.6            0.24            -1.5         -0.0064           -0.28            -1.8      4.9e+03      0.013       12     0.98   ++
    7            -0.9             2.2            -1.6            0.27            -1.5         -0.0061           -0.28            -1.9      4.9e+03    0.00024  1.2e+02        1   ++
    8            -0.9             2.2            -1.6            0.27            -1.5         -0.0061           -0.28            -1.9      4.9e+03    6.2e-07  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b07everything_000211
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_wi beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0              -1          -0.065               0               0               0           -0.72               0               0          -0.048           -0.46               0               0      5.9e+03      0.076       10      1.1   ++
    1            -2.1             2.3               0               0               0            -2.3               0               0           -0.87             1.3               0               0      5.3e+03      0.038    1e+02        1   ++
    2            -2.3             2.2               0               0               0            -2.7               0               0           -0.93             1.4               0               0      5.3e+03     0.0012    1e+03        1   ++
    3            -2.3             2.2               0               0               0            -2.7               0               0           -0.93             1.4               0               0      5.3e+03    5.7e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
Attempt 40/100
Considering neighbor 0/20 for current solution
Attempt 41/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b07everything_000212
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.66             0.5              -1             1.7           -0.73               1         -0.0022           -0.46           -0.25      5.5e+03          2        1     0.76    +
    1            -0.9             1.5            -1.1             1.1              -1             0.9         -0.0058           -0.52           -0.65      5.1e+03       0.38       10      1.1   ++
    2           -0.45             2.1            -2.3          -0.068            -1.7           -0.26         -0.0061          -0.023            -1.7        5e+03      0.033       10     0.45    +
    3           -0.92             2.2            -1.6             0.1            -1.5           -0.11          -0.006           -0.28            -1.8      4.9e+03       0.03    1e+02        1   ++
    4           -0.88             2.2            -1.6            0.29            -1.5           0.035         -0.0062           -0.27            -1.9      4.9e+03     0.0062    1e+03     0.97   ++
    5            -0.9             2.2            -1.6            0.28            -1.5           0.043         -0.0062           -0.28            -1.8      4.9e+03    0.00011    1e+04        1   ++
    6            -0.9             2.2            -1.6            0.28            -1.5           0.043         -0.0062           -0.28            -1.8      4.9e+03    8.1e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 42/100
Considering neighbor 0/20 for current solution
Attempt 43/100
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b07everything_000213
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03        2.5       10        1   ++
    1      5.2e+03       0.86    1e+02        1   ++
    2      5.2e+03      0.085    1e+03      1.1   ++
    3      5.2e+03      0.002    1e+04        1   ++
    4      5.2e+03    1.4e-06    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 22 unknown parameters [max: 50]
*** Estimate b07everything_000214
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03      0.041       10        1   ++
    1      5.5e+03      0.053    1e+02     0.97   ++
    2      5.5e+03     0.0043    1e+03        1   ++
    3      5.5e+03    0.00016    1e+04        1   ++
    4      5.5e+03    2.1e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Attempt 44/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b07everything_000215
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.72            0.44              -1             1.7           -0.56           -0.49           -0.24      5.6e+03      0.064        1     0.75    +
    1            -1.2             1.4            -1.1             1.1            -1.2           -0.19            -0.7      5.1e+03      0.024       10      1.1   ++
    2            -1.2             1.4            -1.1             1.1            -1.2           -0.19            -0.7      5.1e+03      0.024     0.73    -0.33    -
    3            -1.3             2.1            -1.5            0.34            -1.3           -0.26            -1.1        5e+03      0.016      7.3      1.1   ++
    4            -1.2             2.2            -1.6            0.27            -1.5           -0.15            -1.7      4.9e+03     0.0012       73        1   ++
    5            -1.2             2.2            -1.6            0.27            -1.5           -0.15            -1.9      4.9e+03    5.7e-05  7.3e+02        1   ++
    6            -1.2             2.2            -1.6            0.27            -1.5           -0.15            -1.9      4.9e+03    1.4e-07  7.3e+02        1   ++
Considering neighbor 0/20 for current solution
Attempt 45/100
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b07everything_000216
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost beta_SM_TT_SCAL beta_SM_TT_SCAL         asc_car beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0              -1               0               0               0              -1               0               0          -0.079               0               0      5.9e+03      0.076       10      1.1   ++
    1            -1.6               0               0               0            -1.8               0               0            -0.7               0               0      5.6e+03     0.0079    1e+02        1   ++
    2            -1.7               0               0               0            -2.2               0               0           -0.76               0               0      5.6e+03     0.0005    1e+03        1   ++
    3            -1.7               0               0               0            -2.2               0               0           -0.76               0               0      5.6e+03    1.8e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 46/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000217
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC         asc_car beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.65           -0.65               0               0               0         -0.0026               0               0            -0.4               0               0      5.7e+03        2.5       10      1.1   ++
    1           -0.41            -1.1               0               0               0         -0.0047               0               0          -0.064               0               0      5.6e+03       0.22    1e+02      1.1   ++
    2           -0.39            -1.1               0               0               0         -0.0052               0               0          -0.062               0               0      5.6e+03     0.0049    1e+03        1   ++
    3           -0.39            -1.1               0               0               0         -0.0052               0               0          -0.062               0               0      5.6e+03    2.4e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 47/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b07everything_000218
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.94            0.44              -1           -0.52         -0.0037           -0.72           -0.22      5.5e+03        2.6       10        1   ++
    1           -0.84               2            -2.7            -2.6         -0.0052           -0.24            0.95        5e+03       0.58    1e+02        1   ++
    2           -0.84             2.1            -3.1            -2.7         -0.0061           -0.27             1.1      4.9e+03      0.036    1e+03        1   ++
    3           -0.85             2.1            -3.1            -2.8         -0.0062           -0.28             1.2      4.9e+03    0.00012    1e+04        1   ++
    4           -0.85             2.1            -3.1            -2.8         -0.0062           -0.28             1.2      4.9e+03    2.6e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 48/100
Biogeme parameters read from biogeme.toml.
Model with 21 unknown parameters [max: 50]
*** Estimate b07everything_000219
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03        3.3       10      1.1   ++
    1      5.4e+03       0.55    1e+02      1.1   ++
    2      5.4e+03      0.048    1e+03        1   ++
    3      5.4e+03    0.00034    1e+04        1   ++
    4      5.4e+03    1.7e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 49/100
Biogeme parameters read from biogeme.toml.
Model with 21 unknown parameters [max: 50]
*** Estimate b07everything_000220
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03        2.5       10        1   ++
    1      5.8e+03       0.56    1e+02      1.1   ++
    2      5.7e+03       0.07    1e+03      1.1   ++
    3      5.7e+03     0.0016    1e+04        1   ++
    4      5.7e+03    9.4e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 50/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000221
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC         asc_car beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.52              -1               0               0               0         -0.0026               0               0           -0.34               0               0      5.7e+03        2.5       10        1   ++
    1           -0.18            -1.5               0               0               0         -0.0048               0               0             0.1               0               0      5.6e+03       0.13    1e+02        1   ++
    2           -0.17            -1.6               0               0               0         -0.0053               0               0           0.091               0               0      5.6e+03     0.0022    1e+03        1   ++
    3           -0.17            -1.6               0               0               0         -0.0053               0               0           0.091               0               0      5.6e+03      5e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b07everything_000222
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.92          -0.072          -0.011              -1            -0.7               1         -0.0024           -0.56           -0.27          -0.048      5.5e+03        2.3       10        1   ++
    1           -0.99            0.83            0.65            -2.7            -1.3           -0.15         -0.0047           -0.31          -0.031           -0.53      5.3e+03       0.65       10     0.88    +
    2            -1.1             1.1            0.89              -3            -1.2            0.25         -0.0055           -0.25          -0.063           -0.64      5.3e+03      0.097    1e+02      1.2   ++
    3            -1.2             1.2            0.94              -3            -1.1            0.49         -0.0055           -0.22          -0.059           -0.63      5.2e+03     0.0061    1e+03      1.1   ++
    4            -1.2             1.2            0.95              -3            -1.1            0.56         -0.0055           -0.21          -0.059           -0.62      5.2e+03    0.00029    1e+04        1   ++
    5            -1.2             1.2            0.95              -3            -1.1            0.56         -0.0055           -0.21          -0.059           -0.62      5.2e+03    1.3e-06    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b07everything_000223
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.95            0.39              -1           -0.47               1         -0.0042           -0.84           -0.24      5.5e+03        2.5       10        1   ++
    1           -0.95            0.39              -1           -0.47               1         -0.0042           -0.84           -0.24      5.5e+03        2.5      1.6     -7.6    -
    2            -1.3               2              -2            -1.2            0.85         -0.0031            -0.5            -0.7        5e+03       0.72       16        1   ++
    3            -1.3               2              -2            -1.2            0.85         -0.0031            -0.5            -0.7        5e+03       0.72     0.63   -0.076    -
    4              -1             2.2            -2.4            -1.3            0.23         -0.0065           -0.36           -0.92        5e+03      0.035      6.3      1.1   ++
    5           -0.95             2.1            -2.9            -1.5           0.065         -0.0062           -0.32            -1.7      4.9e+03      0.034       63        1   ++
    6           -0.94             2.1              -3            -1.5           0.094         -0.0062           -0.31            -1.8      4.9e+03     0.0017  6.3e+02        1   ++
    7           -0.94             2.1              -3            -1.5           0.093         -0.0062           -0.31            -1.8      4.9e+03    7.4e-06  6.3e+03        1   ++
    8           -0.94             2.1              -3            -1.5           0.093         -0.0062           -0.31            -1.8      4.9e+03    7.1e-08  6.3e+03        1   ++
Considering neighbor 2/20 for current solution
Attempt 51/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000224
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.4e+03      0.045       10      1.1   ++
    1      5.3e+03      0.012    1e+02      1.1   ++
    2      5.3e+03     0.0009    1e+03        1   ++
    3      5.3e+03    7.2e-06    1e+04        1   ++
    4      5.3e+03    6.1e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b07everything_000225
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.53            0.32              -1               0               0               0         -0.0036               0               0           -0.41           -0.16               0               0      5.6e+03        2.6       10        1   ++
    1           -0.53               2            -1.6               0               0               0         -0.0051               0               0            0.14              -1               0               0      5.2e+03       0.87    1e+02     0.97   ++
    2           -0.61             1.9            -1.6               0               0               0         -0.0059               0               0            0.11            -1.3               0               0      5.2e+03      0.039    1e+03        1   ++
    3           -0.62             1.9            -1.6               0               0               0          -0.006               0               0            0.11            -1.3               0               0      5.2e+03    0.00019    1e+04        1   ++
    4           -0.62             1.9            -1.6               0               0               0          -0.006               0               0            0.11            -1.3               0               0      5.2e+03    4.2e-09    1e+04        1   ++
Considering neighbor 1/20 for current solution
Attempt 52/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b07everything_000226
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0              -1          -0.098          -0.023            -0.9           -0.46           -0.47           -0.33          -0.035      5.7e+03       0.05       10        1   ++
    1            -1.1            0.79            0.64            -2.9            -2.1          -0.076             0.2          -0.041      5.2e+03       0.02    1e+02        1   ++
    2            -1.3             1.1            0.91            -3.2            -2.4          -0.072            0.17           -0.21      5.2e+03     0.0017    1e+03      1.1   ++
    3            -1.4             1.1            0.95            -3.2            -2.4           -0.07            0.16           -0.23      5.2e+03    2.6e-05    1e+04        1   ++
    4            -1.4             1.1            0.95            -3.2            -2.4           -0.07            0.16           -0.23      5.2e+03      1e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 53/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000227
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03      0.039       10      1.1   ++
    1      5.3e+03      0.058    1e+02     0.98   ++
    2      5.3e+03     0.0041    1e+03        1   ++
    3      5.3e+03    0.00015    1e+04        1   ++
    4      5.3e+03    1.7e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 54/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b07everything_000228
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.45            -0.7              -1               0               0               0               0               0           -0.43           -0.12               0               0      5.6e+03      0.044       10        1   ++
    1            0.32            -1.1            -2.8               0               0               0               0               0           -0.13            0.31               0               0      5.4e+03      0.013    1e+02        1   ++
    2            0.38            -1.2              -3               0               0               0               0               0           -0.12            0.32               0               0      5.4e+03    0.00038    1e+03        1   ++
    3            0.38            -1.2              -3               0               0               0               0               0           -0.12            0.32               0               0      5.4e+03    3.7e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 55/100
Considering neighbor 0/20 for current solution
Attempt 56/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000229
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost     lambda_cost beta_SM_TT_SCAL beta_SM_TT_SCAL         asc_car beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0              -1               0               0               0            -0.3               2               0               0           -0.13               0               0        6e+03       0.08       10        1   ++
    1              -1               0               0               0            -0.3               2               0               0           -0.13               0               0        6e+03       0.08        5 -8.3e+05    -
    2              -1               0               0               0            -0.3               2               0               0           -0.13               0               0        6e+03       0.08      2.5      -42    -
    3            -1.5               0               0               0            -1.7            -0.5               0               0            -1.3               0               0      5.9e+03      0.082      2.5      0.2    +
    4            -1.5               0               0               0            -1.7            -0.5               0               0            -1.3               0               0      5.9e+03      0.082        1    -0.66    -
    5            -1.4               0               0               0           -0.71           -0.45               0               0           -0.58               0               0      5.7e+03      0.026        1     0.82    +
    6            -1.7               0               0               0            -1.4            0.59               0               0           -0.93               0               0      5.7e+03      0.026        1     0.38    +
    7            -1.7               0               0               0            -1.1            0.38               0               0           -0.88               0               0      5.7e+03     0.0015       10      1.1   ++
    8            -1.7               0               0               0            -1.1            0.17               0               0           -0.88               0               0      5.7e+03     0.0012    1e+02     0.98   ++
    9            -1.7               0               0               0            -1.1            0.17               0               0           -0.88               0               0      5.7e+03    3.3e-06    1e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 18 unknown parameters [max: 50]
*** Estimate b07everything_000230
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0        6e+03      0.073       10      1.1   ++
    1      5.5e+03      0.031    1e+02     0.98   ++
    2      5.5e+03     0.0011    1e+03        1   ++
    3      5.5e+03    4.7e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
Attempt 57/100
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b07everything_000231
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0              -1           -0.18          -0.017               0               0               0           -0.67          -0.005               0               0           -0.74           -0.36          -0.043               0               0      5.7e+03        2.3       10        1   ++
    1            -1.9            0.85             0.8               0               0               0           -0.94         -0.0052               0               0              -1            0.18          -0.054               0               0      5.5e+03       0.56    1e+02      1.1   ++
    2            -2.2             1.2             1.1               0               0               0           -0.96         -0.0055               0               0              -1            0.16          -0.097               0               0      5.5e+03      0.071    1e+03      1.1   ++
    3            -2.3             1.2             1.2               0               0               0           -0.96         -0.0056               0               0              -1            0.16          -0.097               0               0      5.5e+03     0.0017    1e+04        1   ++
    4            -2.3             1.2             1.2               0               0               0           -0.96         -0.0056               0               0              -1            0.16          -0.097               0               0      5.5e+03    1.1e-06    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 58/100
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b07everything_000232
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.5e+03        2.7       10      1.1   ++
    1      5.4e+03       0.39    1e+02      1.1   ++
    2      5.4e+03      0.032    1e+03      1.1   ++
    3      5.4e+03    0.00027    1e+04        1   ++
    4      5.4e+03    2.3e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 59/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b07everything_000233
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0            -0.5           -0.79           0.093         -0.0049           -0.88             1.6              -1          0.0035           -0.21         0.00042           -0.13          -0.038      5.4e+03        2.2        1      0.9    +
    1           -0.18            -1.2             1.1           0.056            -1.5            0.76            -1.1         -0.0049           -0.46            0.21           0.093          -0.099      5.1e+03       0.88       10        1   ++
    2          -0.051            -1.1            0.96            0.57            -1.8            0.39            -1.1         -0.0058           -0.41             0.3           0.068           -0.17      5.1e+03      0.034    1e+02     0.91   ++
    3           -0.12            -1.1            0.96            0.53            -1.7            0.44            -1.1         -0.0059           -0.47            0.31           0.077           -0.14      5.1e+03    0.00022    1e+03        1   ++
    4           -0.12            -1.1            0.96            0.53            -1.7            0.44            -1.1         -0.0059           -0.47            0.31           0.077           -0.14      5.1e+03    7.1e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 60/100
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b07everything_000234
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.65           -0.72            0.42            0.13           -0.63            -0.9           -0.69          0.0066            0.24           0.016      5.3e+03      0.043       10      1.1   ++
    1           -0.58              -1            0.76             0.4            -1.1            -1.1           -0.56             0.3            0.12           -0.07      5.1e+03       0.01    1e+02      1.1   ++
    2           -0.68            -1.1            0.94            0.56            -1.2            -1.1           -0.56            0.33            0.12          -0.069      5.1e+03    0.00059    1e+03        1   ++
    3           -0.68            -1.1            0.94            0.56            -1.2            -1.1           -0.56            0.33            0.12          -0.069      5.1e+03    4.5e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 61/100
Biogeme parameters read from biogeme.toml.
Model with 19 unknown parameters [max: 50]
*** Estimate b07everything_000235
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03        2.9       10        1   ++
    1      5.7e+03       0.32    1e+02      1.1   ++
    2      5.7e+03      0.014    1e+03        1   ++
    3      5.7e+03    2.1e-05    1e+04        1   ++
    4      5.7e+03    4.6e-11    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 62/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b07everything_000236
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.24           -0.56              -1               0               0               0               0               0           -0.26          -0.026               0               0      5.6e+03       0.04       10        1   ++
    1            0.45            -1.2            -1.5               0               0               0               0               0          -0.062            0.28               0               0      5.4e+03     0.0081    1e+02        1   ++
    2            0.45            -1.3            -1.6               0               0               0               0               0          -0.062            0.27               0               0      5.4e+03    0.00022    1e+03        1   ++
    3            0.45            -1.3            -1.6               0               0               0               0               0          -0.062            0.27               0               0      5.4e+03    2.4e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 63/100
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b07everything_000237
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03        2.3       10        1   ++
    1      5.3e+03        1.1    1e+02        1   ++
    2      5.3e+03      0.095    1e+03      1.1   ++
    3      5.3e+03     0.0024    1e+04        1   ++
    4      5.3e+03    1.9e-06    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b07everything_000238
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0              -1           -0.34          -0.026               0               0               0           -0.29               0               0           -0.35           -0.24          -0.019               0               0      5.9e+03      0.039       10      1.1   ++
    1            -2.1            0.81            0.76               0               0               0           -0.86               0               0           -0.88            0.18           0.015               0               0      5.6e+03      0.023    1e+02      1.1   ++
    2            -2.5             1.2             1.1               0               0               0           -0.95               0               0            -0.9            0.16          -0.097               0               0      5.5e+03     0.0038    1e+03      1.1   ++
    3            -2.5             1.2             1.2               0               0               0           -0.95               0               0            -0.9            0.16            -0.1               0               0      5.5e+03    0.00011    1e+04        1   ++
    4            -2.5             1.2             1.2               0               0               0           -0.95               0               0            -0.9            0.16            -0.1               0               0      5.5e+03      1e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b07everything_000239
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.53          -0.019          -0.005              -1           -0.46               1         -0.0034           -0.36           -0.21           -0.03      5.5e+03        2.4       10        1   ++
    1           -0.87            0.83            0.79            -1.5            -1.1           -0.38          -0.005           -0.15          -0.079           -0.65      5.3e+03       0.63       10     0.88    +
    2            -1.2             1.1            0.97            -1.5            -1.4            0.29         -0.0055           -0.29          -0.069            -0.7      5.3e+03      0.046    1e+02     0.91   ++
    3            -1.2             1.2            0.99            -1.5            -1.1            0.36         -0.0055           -0.19          -0.072           -0.66      5.3e+03     0.0008    1e+03     0.97   ++
    4            -1.2             1.2               1            -1.6            -1.1             0.4         -0.0055            -0.2          -0.069           -0.65      5.3e+03    0.00023    1e+04     0.97   ++
    5            -1.2             1.2               1            -1.6            -1.1             0.4         -0.0055            -0.2          -0.069           -0.65      5.3e+03    6.3e-07    1e+04        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000240
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.53          -0.061         -0.0074            0.31              -1            -0.5         -0.0042            -0.4           -0.22          -0.027           -0.14      5.4e+03        2.4       10        1   ++
    1           -0.93            0.41             0.2             2.1            -1.6           -0.99         -0.0052           -0.19           0.017            -0.2           -0.21        5e+03        1.1    1e+02     0.99   ++
    2            -1.2            0.67             0.4               2            -1.7            -1.1          -0.006            -0.2          0.0097            -0.3           -0.22        5e+03      0.082    1e+03        1   ++
    3            -1.2            0.72            0.45               2            -1.7            -1.1         -0.0062            -0.2          0.0086            -0.3            -0.2        5e+03     0.0016    1e+04        1   ++
    4            -1.2            0.72            0.45               2            -1.7            -1.1         -0.0062            -0.2          0.0086            -0.3            -0.2        5e+03    8.9e-07    1e+04        1   ++
Considering neighbor 3/20 for current solution
Considering neighbor 4/20 for current solution
Attempt 64/100
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b07everything_000241
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03      0.087        1     0.74    +
    1      5.3e+03      0.024       10     0.98   ++
    2      5.3e+03      0.043       10     0.36    +
    3      5.2e+03     0.0014    1e+02      1.1   ++
    4      5.2e+03     0.0017    1e+03     0.99   ++
    5      5.2e+03    9.9e-06    1e+04        1   ++
    6      5.2e+03    3.1e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000242
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.64          -0.021          -0.016            0.32              -1             1.4           -0.58            -0.4            -0.3          -0.026           -0.17      5.5e+03      0.068       10     0.91   ++
    1           -0.64          -0.021          -0.016            0.32              -1             1.4           -0.58            -0.4            -0.3          -0.026           -0.17      5.5e+03      0.068        5 -7.7e+02    -
    2           -0.64          -0.021          -0.016            0.32              -1             1.4           -0.58            -0.4            -0.3          -0.026           -0.17      5.5e+03      0.068      2.5      -17    -
    3           -0.64          -0.021          -0.016            0.32              -1             1.4           -0.58            -0.4            -0.3          -0.026           -0.17      5.5e+03      0.068      1.2       -1    -
    4            -1.3            0.52          0.0085             1.6            -1.6             0.6            -1.2           -0.13          0.0032          -0.078           -0.38        5e+03     0.0097       12        1   ++
    5            -1.4            0.68            0.52             1.8            -1.7            0.37            -1.1          -0.067           0.027            -0.3           -0.29        5e+03     0.0013  1.2e+02     0.99   ++
    6            -1.5            0.71            0.51             1.9            -1.7            0.38            -1.1          -0.083           0.027           -0.31           -0.28        5e+03    1.5e-05  1.2e+03        1   ++
    7            -1.5            0.71            0.51             1.9            -1.7            0.38            -1.1          -0.083           0.027           -0.31           -0.28        5e+03    1.8e-09  1.2e+03        1   ++
Considering neighbor 1/20 for current solution
Attempt 65/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b07everything_000243
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.66          -0.044          -0.014              -1           -0.35           -0.29           -0.23          -0.024      5.6e+03      0.055       10        1   ++
    1            -1.1            0.82            0.68            -1.5            -2.1           -0.02            0.17         -0.0051      5.2e+03      0.015    1e+02        1   ++
    2            -1.3             1.1            0.97            -1.6            -2.3          -0.052            0.15           -0.18      5.2e+03     0.0012    1e+03      1.1   ++
    3            -1.4             1.2               1            -1.6            -2.3          -0.052            0.14            -0.2      5.2e+03    2.1e-05    1e+04        1   ++
    4            -1.4             1.2               1            -1.6            -2.3          -0.052            0.14            -0.2      5.2e+03    6.7e-09    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 66/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000244
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC         asc_car beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.66              -1               2               0               0               0               0               0           -0.67               0               0      6.3e+03       0.14        1     0.42    +
    1           -0.89               0             2.1               0               0               0               0               0           0.077               0               0      6.2e+03       0.29        1     0.19    +
    2            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52        1     0.43    +
    3            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52      0.5      -14    -
    4            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52     0.25     -6.5    -
    5            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52     0.12     -4.2    -
    6            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52    0.062     -1.6    -
    7            -1.4          0.0095             3.1               0               0               0               0               0           -0.53               0               0      5.9e+03        1.1    0.062      0.5    +
    8            -1.4          0.0095             3.1               0               0               0               0               0           -0.53               0               0      5.9e+03        1.1    0.031    -0.15    -
    9            -1.5          -0.022             3.1               0               0               0               0               0           -0.54               0               0      5.9e+03       0.33    0.031     0.14    +
   10            -1.5          -0.022             3.1               0               0               0               0               0           -0.54               0               0      5.9e+03       0.33    0.016    -0.32    -
   11            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19     0.16     0.94   ++
   12            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19    0.078     -7.3    -
   13            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19    0.039     -5.4    -
   14            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19     0.02     -4.4    -
   15            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19   0.0098     -3.8    -
   16            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19   0.0049     -1.5    -
   17            -1.5         -0.0013               3               0               0               0               0               0           -0.56               0               0      5.9e+03     0.0088   0.0049     0.86    +
   18            -1.5         -0.0012               3               0               0               0               0               0           -0.56               0               0      5.9e+03     0.0032    0.049        1   ++
   19            -1.5         -0.0014               3               0               0               0               0               0           -0.58               0               0      5.9e+03     0.0027     0.49        1   ++
   20            -1.4         -0.0054             2.5               0               0               0               0               0           -0.54               0               0      5.9e+03      0.097     0.49     0.54    +
   21            -1.5          -0.024               2               0               0               0               0               0           -0.57               0               0      5.8e+03      0.083      4.9      1.2   ++
   22            -1.2           -0.26           -0.73               0               0               0               0               0           -0.39               0               0      5.8e+03      0.038      4.9     0.65    +
   23            -1.2           -0.26           -0.73               0               0               0               0               0           -0.39               0               0      5.8e+03      0.038      2.4 -2.5e+02    -
   24            -1.2           -0.26           -0.73               0               0               0               0               0           -0.39               0               0      5.8e+03      0.038      1.2     -3.1    -
   25           -0.48            -1.5            0.14               0               0               0               0               0            0.35               0               0      5.6e+03      0.032       12      1.3   ++
   26           -0.35            -1.6            0.53               0               0               0               0               0            0.24               0               0      5.6e+03     0.0079       12     0.84    +
   27            -0.4            -1.6            0.46               0               0               0               0               0             0.2               0               0      5.5e+03    0.00061  1.2e+02      1.1   ++
   28           -0.41            -1.6            0.45               0               0               0               0               0             0.2               0               0      5.5e+03    6.9e-06  1.2e+03        1   ++
   29           -0.41            -1.6            0.45               0               0               0               0               0             0.2               0               0      5.5e+03    3.9e-10  1.2e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 67/100
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b07everything_000245
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.69              -1             1.8           -0.64           -0.56      5.8e+03      0.086        1     0.66    +
    1           -0.41            -1.8            0.78            -1.6           -0.11      5.5e+03      0.034        1     0.87    +
    2           -0.65            -1.4             0.6           -0.95           -0.11      5.4e+03     0.0035       10     0.98   ++
    3           -0.59            -1.5            0.39              -1          -0.097      5.4e+03     0.0015    1e+02     0.95   ++
    4           -0.61            -1.5            0.41              -1           -0.11      5.4e+03      2e-05    1e+03        1   ++
    5           -0.61            -1.5            0.41              -1           -0.11      5.4e+03    8.8e-09    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 68/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000246
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      6.1e+03          2        1     0.51    +
    1      5.7e+03        0.5       10     0.92   ++
    2      5.7e+03        0.5        5 -2.2e+03    -
    3      5.7e+03        0.5      2.5      -18    -
    4      5.7e+03        0.5      1.2    -0.14    -
    5      5.5e+03       0.19      1.2     0.86    +
    6      5.4e+03      0.053       12        1   ++
    7      5.4e+03    0.00089  1.2e+02     0.97   ++
    8      5.4e+03    2.4e-06  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 69/100
Biogeme parameters read from biogeme.toml.
Model with 23 unknown parameters [max: 50]
*** Estimate b07everything_000247
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03        2.6       10        1   ++
    1      5.5e+03       0.94    1e+02        1   ++
    2      5.5e+03      0.089    1e+03      1.1   ++
    3      5.5e+03     0.0022    1e+04        1   ++
    4      5.5e+03    1.6e-06    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 70/100
Considering neighbor 0/20 for current solution
Attempt 71/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b07everything_000248
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0              -1            0.34            0.05           -0.62           -0.97         -0.0032           -0.59          -0.089           -0.14      5.4e+03        2.2       10      1.1   ++
    1            -1.2            0.91            0.72           -0.99            -1.1          -0.005            -0.4          -0.033           -0.61      5.3e+03       0.38    1e+02      1.1   ++
    2            -1.4             1.1            0.93              -1            -1.1         -0.0055           -0.39          -0.036           -0.66      5.3e+03      0.027    1e+03      1.1   ++
    3            -1.4             1.2            0.96              -1            -1.1         -0.0055           -0.39          -0.036           -0.65      5.3e+03     0.0014    1e+04        1   ++
    4            -1.4             1.2            0.96              -1            -1.1         -0.0055           -0.39          -0.036           -0.64      5.3e+03    0.00022    1e+05        1   ++
    5            -1.4             1.2            0.96              -1            -1.1         -0.0055           -0.39          -0.036           -0.64      5.3e+03    3.7e-06    1e+05        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b07everything_000249
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.67             0.5              -1             1.7           -0.91         -0.0026           -0.46           -0.23      5.5e+03        1.9        1     0.77    +
    1           -0.94             1.5            -1.2               1              -1         -0.0053            -0.5           -0.36      5.1e+03       0.39       10      1.2   ++
    2           -0.32               2            -2.3         0.00089            -1.1         -0.0061           0.085           -0.36        5e+03      0.076       10     0.29    +
    3           -0.73             2.1            -1.7            0.21            -1.1         -0.0061           -0.17           -0.34        5e+03      0.003    1e+02      1.1   ++
    4           -0.73             2.1            -1.7            0.38            -1.1         -0.0062           -0.18            -0.3        5e+03     0.0038    1e+03     0.99   ++
    5           -0.74             2.1            -1.7            0.39            -1.1         -0.0062           -0.19           -0.29        5e+03    1.1e-05    1e+04        1   ++
    6           -0.74             2.1            -1.7            0.39            -1.1         -0.0062           -0.19           -0.29        5e+03    2.9e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Attempt 72/100
Considering neighbor 0/20 for current solution
Attempt 73/100
Considering neighbor 0/20 for current solution
Attempt 74/100
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b07everything_000250
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.91         -0.0041         -0.0085              -1               0               0               0         -0.0013               0               0           -0.41           -0.18           -0.05               0               0      5.7e+03        2.5       10        1   ++
    1           -0.76            0.79             0.6            -2.8               0               0               0         -0.0044               0               0           0.096          -0.061           -0.67               0               0      5.5e+03       0.52    1e+02      1.1   ++
    2           -0.94             1.1            0.84              -3               0               0               0         -0.0053               0               0            0.12          -0.073           -0.76               0               0      5.4e+03      0.059    1e+03      1.1   ++
    3           -0.97             1.1            0.88              -3               0               0               0         -0.0053               0               0            0.12          -0.074           -0.76               0               0      5.4e+03    0.00097    1e+04        1   ++
    4           -0.97             1.1            0.88              -3               0               0               0         -0.0053               0               0            0.12          -0.074           -0.76               0               0      5.4e+03    3.1e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 75/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000251
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      6.1e+03       0.07       10      1.1   ++
    1      5.9e+03     0.0023    1e+02        1   ++
    2      5.9e+03    1.1e-05    1e+03        1   ++
    3      5.9e+03    2.6e-10    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 76/100
Considering neighbor 0/20 for current solution
Attempt 77/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000252
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      6.1e+03       0.07       10      1.1   ++
    1      5.9e+03     0.0023    1e+02        1   ++
    2      5.9e+03    1.1e-05    1e+03        1   ++
    3      5.9e+03    2.6e-10    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b07everything_000253
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.71            0.47              -1             1.7           -0.56           -0.51           -0.24      5.7e+03       0.08        1      0.7    +
    1            -1.1             1.5              -1             1.3            -1.6            0.04           -0.42      5.1e+03      0.025       10        1   ++
    2            -1.1             1.5              -1             1.3            -1.6            0.04           -0.42      5.1e+03      0.025     0.81    -0.21    -
    3            -1.2             1.8            -1.5            0.44              -2          -0.059           -0.32        5e+03      0.018      8.1      1.1   ++
    4            -1.1             2.1            -1.6            0.33            -2.7           -0.12             1.3        5e+03     0.0031       81     0.98   ++
    5            -1.1             2.1            -1.6            0.34            -2.8           -0.12             1.2        5e+03    0.00014  8.1e+02        1   ++
    6            -1.1             2.1            -1.6            0.34            -2.8           -0.12             1.2        5e+03    5.9e-07  8.1e+02        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000254
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC         asc_car beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.66              -1               2               0               0               0               0               0           -0.67               0               0      6.3e+03       0.14        1     0.42    +
    1           -0.89               0             2.1               0               0               0               0               0           0.077               0               0      6.2e+03       0.29        1     0.19    +
    2            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52        1     0.43    +
    3            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52      0.5      -14    -
    4            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52     0.25     -6.5    -
    5            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52     0.12     -4.2    -
    6            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52    0.062     -1.6    -
    7            -1.4          0.0095             3.1               0               0               0               0               0           -0.53               0               0      5.9e+03        1.1    0.062      0.5    +
    8            -1.4          0.0095             3.1               0               0               0               0               0           -0.53               0               0      5.9e+03        1.1    0.031    -0.15    -
    9            -1.5          -0.022             3.1               0               0               0               0               0           -0.54               0               0      5.9e+03       0.33    0.031     0.14    +
   10            -1.5          -0.022             3.1               0               0               0               0               0           -0.54               0               0      5.9e+03       0.33    0.016    -0.32    -
   11            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19     0.16     0.94   ++
   12            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19    0.078     -7.3    -
   13            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19    0.039     -5.4    -
   14            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19     0.02     -4.4    -
   15            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19   0.0098     -3.8    -
   16            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19   0.0049     -1.5    -
   17            -1.5         -0.0013               3               0               0               0               0               0           -0.56               0               0      5.9e+03     0.0088   0.0049     0.86    +
   18            -1.5         -0.0012               3               0               0               0               0               0           -0.56               0               0      5.9e+03     0.0032    0.049        1   ++
   19            -1.5         -0.0014               3               0               0               0               0               0           -0.58               0               0      5.9e+03     0.0027     0.49        1   ++
   20            -1.4         -0.0054             2.5               0               0               0               0               0           -0.54               0               0      5.9e+03      0.097     0.49     0.54    +
   21            -1.5          -0.024               2               0               0               0               0               0           -0.57               0               0      5.8e+03      0.083      4.9      1.2   ++
   22            -1.2           -0.26           -0.73               0               0               0               0               0           -0.39               0               0      5.8e+03      0.038      4.9     0.65    +
   23            -1.2           -0.26           -0.73               0               0               0               0               0           -0.39               0               0      5.8e+03      0.038      2.4 -2.5e+02    -
   24            -1.2           -0.26           -0.73               0               0               0               0               0           -0.39               0               0      5.8e+03      0.038      1.2     -3.1    -
   25           -0.48            -1.5            0.14               0               0               0               0               0            0.35               0               0      5.6e+03      0.032       12      1.3   ++
   26           -0.35            -1.6            0.53               0               0               0               0               0            0.24               0               0      5.6e+03     0.0079       12     0.84    +
   27            -0.4            -1.6            0.46               0               0               0               0               0             0.2               0               0      5.5e+03    0.00061  1.2e+02      1.1   ++
   28           -0.41            -1.6            0.45               0               0               0               0               0             0.2               0               0      5.5e+03    6.9e-06  1.2e+03        1   ++
   29           -0.41            -1.6            0.45               0               0               0               0               0             0.2               0               0      5.5e+03    3.9e-10  1.2e+03        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 4 unknown parameters [max: 50]
*** Estimate b07everything_000255
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.95           -0.63           -0.93           -0.55      5.5e+03      0.036       10      1.1   ++
    1           -0.86              -1              -1           -0.29      5.4e+03     0.0047    1e+02      1.1   ++
    2           -0.85            -1.1              -1           -0.27      5.4e+03    7.3e-05    1e+03        1   ++
    3           -0.85            -1.1              -1           -0.27      5.4e+03    1.7e-08    1e+03        1   ++
Considering neighbor 3/20 for current solution
Attempt 78/100
Considering neighbor 0/20 for current solution
Attempt 79/100
Biogeme parameters read from biogeme.toml.
Model with 19 unknown parameters [max: 50]
*** Estimate b07everything_000256
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03        2.7       10        1   ++
    1      5.5e+03       0.93    1e+02     0.97   ++
    2      5.5e+03      0.053    1e+03        1   ++
    3      5.5e+03    0.00034    1e+04        1   ++
    4      5.5e+03    1.4e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 80/100
Biogeme parameters read from biogeme.toml.
Model with 20 unknown parameters [max: 50]
*** Estimate b07everything_000257
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03      0.044       10      1.1   ++
    1      5.4e+03       0.01    1e+02      1.1   ++
    2      5.4e+03    0.00066    1e+03        1   ++
    3      5.4e+03    3.5e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 81/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b07everything_000258
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.65           0.022           -0.01              -1               0               0               0               0               0           -0.22            -0.2          -0.029               0               0      5.7e+03      0.045       10        1   ++
    1           -0.91             0.8            0.63            -1.5               0               0               0               0               0            0.25          -0.088           -0.72               0               0      5.5e+03      0.009    1e+02      1.1   ++
    2            -1.2             1.1             0.9            -1.6               0               0               0               0               0            0.24          -0.083           -0.77               0               0      5.5e+03      0.001    1e+03      1.1   ++
    3            -1.2             1.1            0.94            -1.6               0               0               0               0               0            0.24          -0.084           -0.77               0               0      5.5e+03    1.8e-05    1e+04        1   ++
    4            -1.2             1.1            0.94            -1.6               0               0               0               0               0            0.24          -0.084           -0.77               0               0      5.5e+03      5e-09    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 82/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000259
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.71            0.11         -0.0033            0.73           -0.88              -1         -0.0025           -0.25           -0.13           -0.05            -0.3      5.2e+03        2.4       10      1.1   ++
    1            -1.4            0.48            0.26             1.9           -0.98            -1.4         -0.0051           -0.52            0.11           -0.25            -1.3        5e+03       0.77    1e+02      1.1   ++
    2            -1.6            0.66            0.48             1.9              -1            -1.5         -0.0062           -0.55            0.12            -0.4            -1.8        5e+03      0.055    1e+03      1.1   ++
    3            -1.7            0.71            0.54             1.9              -1            -1.5         -0.0063           -0.55            0.12           -0.42            -1.9        5e+03     0.0009    1e+04        1   ++
    4            -1.7            0.71            0.54             1.9              -1            -1.5         -0.0063           -0.55            0.12           -0.42            -1.9        5e+03      8e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 83/100
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b07everything_000260
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.52           0.052         -0.0022              -1               0               0               0         -0.0028               0               0           -0.25           -0.14          -0.034               0               0      5.6e+03        2.5       10        1   ++
    1            -0.7            0.81            0.63            -1.5               0               0               0         -0.0047               0               0            0.15          -0.089           -0.71               0               0      5.5e+03       0.44    1e+02      1.1   ++
    2           -0.94             1.1             0.9            -1.6               0               0               0         -0.0053               0               0            0.13          -0.081           -0.76               0               0      5.5e+03       0.05    1e+03      1.1   ++
    3           -0.98             1.1            0.94            -1.6               0               0               0         -0.0053               0               0            0.13          -0.082           -0.76               0               0      5.5e+03    0.00074    1e+04        1   ++
    4           -0.98             1.1            0.94            -1.6               0               0               0         -0.0053               0               0            0.13          -0.082           -0.76               0               0      5.5e+03      2e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b07everything_000261
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0            -0.9               1           -0.68               0               0               0               0               0           -0.38           -0.45               0               0      5.5e+03      0.041       10      1.1   ++
    1              -1             1.7            -1.1               0               0               0               0               0           0.053            -1.2               0               0      5.3e+03     0.0097    1e+02      1.1   ++
    2            -1.1             1.8            -1.1               0               0               0               0               0           0.057            -1.4               0               0      5.3e+03    0.00044    1e+03        1   ++
    3            -1.1             1.8            -1.1               0               0               0               0               0           0.057            -1.4               0               0      5.3e+03    1.2e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
Attempt 84/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b07everything_000262
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.57           -0.93            -0.9             1.9              -1          0.0068           -0.25           0.035      5.7e+03        2.3        1     0.71    +
    1           0.067            -1.7           0.034             2.1              -1         -0.0079            -1.3            0.42      5.6e+03       0.81        1     0.37    +
    2           0.067            -1.7           0.034             2.1              -1         -0.0079            -1.3            0.42      5.6e+03       0.81      0.5     -1.9    -
    3           0.067            -1.7           0.034             2.1              -1         -0.0079            -1.3            0.42      5.6e+03       0.81     0.25    -0.28    -
    4          0.0011            -1.6            -0.2             2.3              -1         -0.0082            -1.3            0.37      5.5e+03      0.069     0.25     0.25    +
    5            -0.2            -1.5           -0.16             2.1            -1.1         -0.0072            -1.2             0.3      5.4e+03      0.013      2.5      1.1   ++
    6            -0.2            -1.5           -0.16             2.1            -1.1         -0.0072            -1.2             0.3      5.4e+03      0.013      1.2    0.032    -
    7           -0.33            -1.1           -0.68            0.82            -1.2         -0.0017           -0.87            0.44      5.3e+03       0.38      1.2     0.46    +
    8            0.42            -1.3            -1.4           0.087            -1.1         -0.0055           -0.58            0.35      5.2e+03      0.056       12     0.94   ++
    9            0.54            -1.3            -1.6            0.41            -1.1         -0.0057           -0.54            0.36      5.2e+03      0.016       12     0.72    +
   10             0.5            -1.3            -1.5            0.35            -1.1         -0.0057           -0.55            0.34      5.2e+03    0.00061  1.2e+02        1   ++
   11             0.5            -1.3            -1.5            0.34            -1.1         -0.0057           -0.55            0.34      5.2e+03    6.7e-06  1.2e+03        1   ++
   12             0.5            -1.3            -1.5            0.34            -1.1         -0.0057           -0.55            0.34      5.2e+03    3.9e-08  1.2e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b07everything_000263
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost     lambda_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.68              -1             1.9           -0.84               1         -0.0011           -0.46      5.8e+03        1.7        1     0.67    +
    1           -0.69            -1.8            0.85            -1.5            0.34         0.00068           -0.23      5.5e+03       0.27       10     0.92   ++
    2           -0.28            -1.5            0.63            -1.1            0.45          -0.006           -0.23      5.4e+03       0.05    1e+02        1   ++
    3           -0.29            -1.6            0.45            -1.1            0.61         -0.0054           -0.21      5.3e+03     0.0017    1e+03     0.93   ++
    4           -0.31            -1.6            0.46            -1.1            0.58         -0.0054           -0.22      5.3e+03    4.7e-05    1e+04        1   ++
    5           -0.31            -1.6            0.46            -1.1            0.58         -0.0054           -0.22      5.3e+03    5.3e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Attempt 85/100
Biogeme parameters read from biogeme.toml.
Model with 22 unknown parameters [max: 50]
*** Estimate b07everything_000264
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03      0.041       10        1   ++
    1      5.5e+03      0.053    1e+02     0.97   ++
    2      5.5e+03     0.0043    1e+03        1   ++
    3      5.5e+03    0.00016    1e+04        1   ++
    4      5.5e+03    2.1e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 86/100
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b07everything_000265
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.37           -0.71            0.82           -0.68              -1               1         -0.0024           -0.47           -0.17           -0.36      5.2e+03        2.6       10      1.1   ++
    1           -0.48           -0.93             1.9           -0.98            -1.9           -0.44         -0.0054           -0.89            0.34            -1.5        5e+03       0.88       10      0.6    +
    2           -0.48            -1.1               2           -0.95            -1.1           -0.44         -0.0065           -0.88            0.49            -1.9      4.9e+03      0.088    1e+02     0.95   ++
    3           -0.42            -1.1               2              -1            -1.7            0.27         -0.0068           -0.96            0.47              -2      4.9e+03       0.05    1e+02     0.48    +
    4           -0.38            -1.1               2            -1.1            -1.5            0.17         -0.0068           -0.89            0.45            -1.9      4.9e+03     0.0052    1e+03        1   ++
    5            -0.4            -1.1               2              -1            -1.5             0.1         -0.0068            -0.9            0.46            -1.9      4.9e+03    0.00016    1e+04     0.99   ++
    6            -0.4            -1.1               2              -1            -1.5             0.1         -0.0068            -0.9            0.46            -1.9      4.9e+03    3.8e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000266
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.57           -0.89            0.63           -0.93             1.8              -1               1          0.0053           -0.28          -0.011           -0.28      5.5e+03        2.4        1      0.8    +
    1           -0.23           -0.96             1.6           -0.93             1.3              -1            0.69         -0.0064           -0.55           0.085           -0.71        5e+03       0.63       10      1.1   ++
    2           -0.23           -0.96             1.6           -0.93             1.3              -1            0.69         -0.0064           -0.55           0.085           -0.71        5e+03       0.63      2.8      -73    -
    3           -0.23           -0.96             1.6           -0.93             1.3              -1            0.69         -0.0064           -0.55           0.085           -0.71        5e+03       0.63      1.4     -5.8    -
    4           -0.08            -1.1             2.3            -2.2          -0.078            -1.7            0.06         -0.0035           -0.57            0.61            -1.3      4.9e+03       0.13      1.4     0.58    +
    5          -0.036            -1.2             2.1            -1.6           0.091            -1.5           0.017         -0.0068           -0.68            0.46            -1.9      4.8e+03      0.018       14        1   ++
    6          -0.057            -1.2             2.1            -1.6            0.23            -1.5           0.033         -0.0066           -0.69            0.47              -2      4.8e+03     0.0029  1.4e+02     0.97   ++
    7          -0.057            -1.2             2.1            -1.6            0.23            -1.5           0.033         -0.0066           -0.69            0.47              -2      4.8e+03    3.3e-06  1.4e+02        1   ++
Considering neighbor 1/20 for current solution
Attempt 87/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b07everything_000267
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.94           -0.12          -0.015            0.51              -1           -0.79         -0.0032           -0.59           -0.27          -0.042           -0.21      5.4e+03        2.3       10        1   ++
    1              -1            0.41            0.22             1.9            -2.8              -1          -0.005           -0.27           0.066           -0.21           -0.36        5e+03       0.97    1e+02        1   ++
    2            -1.2            0.66            0.45             1.9            -3.2            -1.1         -0.0061           -0.24            0.04            -0.3           -0.27        5e+03      0.084    1e+03      1.1   ++
    3            -1.2            0.71             0.5             1.9            -3.2            -1.1         -0.0062           -0.24           0.039            -0.3           -0.27        5e+03     0.0016    1e+04        1   ++
    4            -1.2            0.71             0.5             1.9            -3.2            -1.1         -0.0062           -0.24           0.039            -0.3           -0.27        5e+03    7.4e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 88/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b07everything_000268
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.73           -0.88               0               0               0              -1               0               0            -0.6           -0.26               0               0      5.6e+03      0.039       10        1   ++
    1           -0.77            -1.3               0               0               0            -2.1               0               0           -0.87            0.14               0               0      5.4e+03     0.0055    1e+02        1   ++
    2           -0.78            -1.3               0               0               0            -2.2               0               0           -0.93            0.16               0               0      5.4e+03    0.00015    1e+03        1   ++
    3           -0.78            -1.3               0               0               0            -2.2               0               0           -0.93            0.16               0               0      5.4e+03      1e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 89/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000269
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03      0.038       10      1.1   ++
    1      5.3e+03      0.013    1e+02      1.1   ++
    2      5.3e+03     0.0006    1e+03        1   ++
    3      5.3e+03    3.1e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 90/100
Considering neighbor 0/20 for current solution
Attempt 91/100
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b07everything_000270
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.68              -1             1.9           -0.64           -0.59        6e+03       0.11        1     0.59    +
    1           -0.92           -0.75             1.6            -1.6          -0.024      5.4e+03      0.031       10     0.96   ++
    2           -0.92           -0.75             1.6            -1.6          -0.024      5.4e+03      0.031      1.2     -1.7    -
    3           -0.68            -1.8            0.39            -2.3            0.03      5.3e+03       0.04      1.2     0.88    +
    4           -0.48            -1.7            0.47            -2.3           0.054      5.2e+03     0.0029       12     0.95   ++
    5            -0.5            -1.7            0.48            -2.4           0.057      5.2e+03    2.1e-05  1.2e+02        1   ++
    6            -0.5            -1.7            0.48            -2.4           0.057      5.2e+03    1.2e-09  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
Attempt 92/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b07everything_000271
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.61           -0.89            0.72              -1           -0.83          0.0016           -0.41          -0.079           -0.26      5.3e+03        3.1       10      1.1   ++
    1           -0.16              -1             1.8            -2.7            -2.4         -0.0045           -0.54            0.32            0.79      4.8e+03       0.68    1e+02      1.1   ++
    2          -0.044            -1.1               2            -3.1            -2.7         -0.0065           -0.65            0.42               1      4.8e+03      0.059    1e+03      1.1   ++
    3          -0.041            -1.1               2            -3.1            -2.8         -0.0068           -0.68            0.44               1      4.8e+03    0.00068    1e+04        1   ++
    4          -0.042            -1.1               2            -3.1            -2.8         -0.0068           -0.68            0.44               1      4.8e+03    1.8e-05    1e+05        1   ++
    5          -0.042            -1.1               2            -3.1            -2.8         -0.0068           -0.68            0.44               1      4.8e+03    6.5e-08    1e+05        1   ++
Considering neighbor 0/20 for current solution
Attempt 93/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b07everything_000272
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.24           -0.56              -1               0               0               0               0               0           -0.26          -0.026               0               0      5.6e+03       0.04       10        1   ++
    1            0.45            -1.2            -1.5               0               0               0               0               0          -0.062            0.28               0               0      5.4e+03     0.0081    1e+02        1   ++
    2            0.45            -1.3            -1.6               0               0               0               0               0          -0.062            0.27               0               0      5.4e+03    0.00022    1e+03        1   ++
    3            0.45            -1.3            -1.6               0               0               0               0               0          -0.062            0.27               0               0      5.4e+03    2.4e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Attempt 94/100
Biogeme parameters read from biogeme.toml.
Model with 19 unknown parameters [max: 50]
*** Estimate b07everything_000273
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03        2.9       10        1   ++
    1      5.7e+03       0.32    1e+02      1.1   ++
    2      5.7e+03      0.014    1e+03        1   ++
    3      5.7e+03    2.1e-05    1e+04        1   ++
    4      5.7e+03    4.6e-11    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 95/100
Considering neighbor 0/20 for current solution
Attempt 96/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b07everything_000274
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.33           -0.57            0.63              -1               0               0               0               0               0           -0.27          -0.067           -0.26               0               0      5.4e+03      0.048       10        1   ++
    1          -0.054           -0.99             1.7            -1.6               0               0               0               0               0          -0.078            0.37            -1.1               0               0      5.1e+03      0.016    1e+02        1   ++
    2          -0.058            -1.2             1.8            -1.6               0               0               0               0               0            -0.1            0.39            -1.4               0               0      5.1e+03    0.00086    1e+03        1   ++
    3           -0.06            -1.2             1.8            -1.6               0               0               0               0               0            -0.1            0.39            -1.4               0               0      5.1e+03    6.1e-06    1e+04        1   ++
    4           -0.06            -1.2             1.8            -1.6               0               0               0               0               0            -0.1            0.39            -1.4               0               0      5.1e+03    3.1e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
Attempt 97/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b07everything_000275
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.5e+03      0.039       10        1   ++
    1      5.4e+03     0.0087    1e+02      1.1   ++
    2      5.4e+03    0.00053    1e+03      1.1   ++
    3      5.4e+03    4.5e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b07everything_000276
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.43           -0.58            0.47              -1           -0.62               1           -0.37           -0.19           -0.21      5.3e+03       0.05       10        1   ++
    1           -0.43           -0.58            0.47              -1           -0.62               1           -0.37           -0.19           -0.21      5.3e+03       0.05      1.3       -3    -
    2           -0.32            -1.1             1.8            -1.6            -1.1            0.81           -0.38            0.15           -0.66      4.9e+03      0.019       13      1.1   ++
    3           -0.32            -1.1             1.8            -1.6            -1.1            0.81           -0.38            0.15           -0.66      4.9e+03      0.019     0.82     -2.4    -
    4           -0.26            -1.2             2.2            -1.7            -1.3          -0.011           -0.37            0.38            -1.1      4.8e+03     0.0087      8.2     0.99   ++
    5           -0.38            -1.2             2.1            -1.6            -1.5          -0.026           -0.55            0.46            -1.8      4.8e+03     0.0014       82      1.1   ++
    6           -0.38            -1.2             2.1            -1.6            -1.5           -0.04           -0.56            0.46              -2      4.8e+03    8.5e-05  8.2e+02        1   ++
    7           -0.38            -1.2             2.1            -1.6            -1.5           -0.04           -0.56            0.46              -2      4.8e+03    2.8e-07  8.2e+02        1   ++
Considering neighbor 1/20 for current solution
Attempt 98/100
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b07everything_000277
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.52           -0.74              -1           -0.94           -0.46           -0.16      5.4e+03      0.044       10        1   ++
    1            0.21            -1.2            -2.9            -2.1           -0.24            0.26      5.1e+03      0.016    1e+02      1.1   ++
    2            0.31            -1.3            -3.3            -2.4           -0.27            0.33      5.1e+03    0.00089    1e+03        1   ++
    3            0.31            -1.3            -3.3            -2.4           -0.27            0.33      5.1e+03    2.8e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b07everything_000278
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.22           -0.77           -0.62               0               0               0               0               0           -0.42           0.022               0               0      5.6e+03      0.038       10      1.1   ++
    1             0.1            -1.1            -1.1               0               0               0               0               0           -0.29            0.33               0               0      5.5e+03     0.0078    1e+02      1.1   ++
    2            0.13            -1.2            -1.1               0               0               0               0               0           -0.28            0.33               0               0      5.5e+03    0.00024    1e+03        1   ++
    3            0.13            -1.2            -1.1               0               0               0               0               0           -0.28            0.33               0               0      5.5e+03    3.2e-07    1e+03        1   ++
Considering neighbor 1/20 for current solution
Attempt 99/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b07everything_000279
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.73            0.39              -1             1.6           -0.73           -0.45           -0.21      5.5e+03      0.049        1     0.83    +
    1            -1.1             1.4            -1.3             0.9            -1.1            -0.2           -0.35      5.1e+03      0.022       10      1.1   ++
    2           -0.87               2            -1.9            0.26            -1.1           0.037           -0.36        5e+03      0.012       10     0.82    +
    3              -1               2            -1.7            0.36            -1.1          -0.061           -0.31        5e+03     0.0012    1e+02        1   ++
    4              -1               2            -1.7            0.38            -1.1          -0.064           -0.31        5e+03    3.1e-05    1e+03        1   ++
    5              -1               2            -1.7            0.38            -1.1          -0.064           -0.31        5e+03    3.6e-09    1e+03        1   ++
Considering neighbor 0/20 for current solution
Pareto file has been updated: b22multiple_models.pareto
Before the algorithm: 465 models, with 7 Pareto.
After the algorithm: 501 models, with 7 Pareto.
VNS algorithm completed. Postprocessing of the Pareto optimal solutions
Pareto set initialized from file with 474 elements [7 Pareto] and 0 invalid elements.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22multiple_models_000000.iter
Parameter values restored from __b22multiple_models_000000.iter
Starting values for the algorithm: {'asc_train_ref': -0.07367671352474071, 'asc_train_diff_male': -1.1590679270761561, 'asc_train_diff_with_ga': 2.1085409793549172, 'b_time': -1.6114913593274356, 'lambda_tt': 0.2233736569872712, 'b_cost': -1.4884009465532348, 'b_headway': -0.006638084810181024, 'asc_car_ref': -0.6960052685126517, 'asc_car_diff_male': 0.47396665105972735, 'asc_car_diff_with_ga': -2.0020626594355013}
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6      0.5    -0.85    -
    1          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6     0.25    -0.84    -
    2          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6     0.12    -0.83    -
    3          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6    0.062    -0.83    -
    4          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6    0.031    -0.83    -
    5          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6    0.016    -0.83    -
    6          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6   0.0078    -0.83    -
    7          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6   0.0039    -0.83    -
    8          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6    0.002    -0.83    -
    9          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  0.00098    -0.83    -
   10          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  0.00049    -0.83    -
   11          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  0.00024    -0.83    -
   12          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  0.00012    -0.83    -
   13          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  6.1e-05    -0.83    -
   14          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  3.1e-05    -0.83    -
   15          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  1.5e-05    -0.83    -
   16          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  7.6e-06    -0.83    -
   17          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  3.8e-06    -0.83    -
   18          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  1.9e-06    -0.83    -
   19          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  9.5e-07    -0.83    -
   20          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  4.8e-07    -0.83    -
   21          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  2.4e-07    -0.83    -
   22          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  1.2e-07    -0.83    -
   23          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6    6e-08    -0.83    -
   24          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6    3e-08    -0.83    -
   25          -0.074            -1.2             2.1            -1.6            -1.5         -0.0066            -0.7            0.47              -2      7.2e+04        1.6  1.5e-08    -0.83    -
Optimization algorithm has *not* converged.
Algorithm: Newton with trust region for simple bound constraints
Cause of termination: Trust region is too small: 1.4901161193847656e-08
Number of iterations: 26
Proportion of Hessian calculation: 1/1 = 100.0%
Optimization time: 0:00:00.861311
Calculate second derivatives and BHHH
It seems that the optimization algorithm did not converge. Therefore, the results may not correspond to the maximum likelihood estimator. Check the specification of the model, or the criteria for convergence of the algorithm.
File b22multiple_models_000000~00.html has been generated.
File b22multiple_models_000000~00.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22multiple_models_000001.iter
Parameter values restored from __b22multiple_models_000001.iter
Starting values for the algorithm: {'asc_train_ref': -0.06428873416454763, 'asc_train_diff_male': -1.1900399775238788, 'asc_train_diff_with_ga': 2.157415716942036, 'b_time': -1.6215306410844021, 'b_cost': -1.5023419723928042, 'b_headway': -0.006593342797065967, 'asc_car_ref': -0.683938377480246, 'asc_car_diff_male': 0.4537580026546972, 'asc_car_diff_with_ga': -1.9759512791566758}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0            0.94           -0.19             3.2            -2.6         5.6e-17            -0.5            0.99            -1.7           -0.55              -3      5.1e+04       0.62        1      0.9    +
    1            0.94           -0.19             3.2            -2.6         5.6e-17            -0.5            0.99            -1.7           -0.55              -3      5.1e+04       0.62      0.5    -0.29    -
    2             1.4            0.31             3.7            -2.1             0.5         -0.0023             1.5            -2.2              -1            -3.5      1.7e+04        1.1      0.5     0.62    +
    3             1.4            0.27             3.7            -1.8               1          -0.041             1.5            -2.1           -0.99            -3.5      1.4e+04      0.049      0.5     0.53    +
    4             1.4            0.27             3.7            -1.8               1          -0.041             1.5            -2.1           -0.99            -3.5      1.4e+04      0.049     0.25   -0.066    -
    5             1.4            0.27             3.7            -1.8               1          -0.041             1.5            -2.1           -0.99            -3.5      1.4e+04      0.049     0.12    0.094    -
    6             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13     0.12      0.2    +
    7             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13    0.062   -0.017    -
    8             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13    0.031    0.022    -
    9             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13    0.016    0.039    -
   10             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13   0.0078    -0.71    -
   11             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13   0.0039     -0.4    -
   12             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13    0.002    -0.23    -
   13             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  0.00098    -0.17    -
   14             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  0.00049    -0.15    -
   15             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  0.00024    -0.13    -
   16             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  0.00012    -0.13    -
   17             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  6.1e-05    -0.12    -
   18             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  3.1e-05    -0.12    -
   19             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  1.5e-05    -0.12    -
   20             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  7.6e-06    -0.12    -
   21             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  3.8e-06    -0.12    -
   22             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  1.9e-06    -0.12    -
   23             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  9.5e-07    -0.12    -
   24             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  4.8e-07    -0.12    -
   25             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  2.4e-07    -0.12    -
   26             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  1.2e-07    -0.12    -
   27             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13    6e-08    -0.12    -
   28             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13    3e-08    -0.12    -
   29             1.4            0.25             3.7            -1.8             1.1          -0.053             1.4            -2.1           -0.98            -3.5      1.4e+04       0.13  1.5e-08    -0.12    -
Optimization algorithm has *not* converged.
Algorithm: Newton with trust region for simple bound constraints
Cause of termination: Trust region is too small: 1.4901161193847656e-08
Number of iterations: 30
Proportion of Hessian calculation: 5/5 = 100.0%
Optimization time: 0:00:02.145363
Calculate second derivatives and BHHH
It seems that the optimization algorithm did not converge. Therefore, the results may not correspond to the maximum likelihood estimator. Check the specification of the model, or the criteria for convergence of the algorithm.
File b22multiple_models_000001~00.html has been generated.
File b22multiple_models_000001~00.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22multiple_models_000002.iter
Parameter values restored from __b22multiple_models_000002.iter
Starting values for the algorithm: {'asc_train_ref': -0.9179504404134234, 'asc_train_diff_with_ga': 2.2435709636922936, 'b_time': -1.5947261592634554, 'b_cost': -1.5032629167922742, 'b_headway': -0.0061230125995098954, 'asc_car_ref': -0.28199124501588113, 'asc_car_diff_with_ga': -1.8290175405420466}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0               0            -1.6            -1.5         -0.0061               0        6e+03        9.2      0.5      -21    -
    1               0            -1.6            -1.5         -0.0061               0        6e+03        9.2     0.25      -80    -
    2               0            -1.6            -1.5         -0.0061               0        6e+03        9.2     0.12      -43    -
    3               0            -1.6            -1.5         -0.0061               0        6e+03        9.2    0.062      -19    -
    4               0            -1.6            -1.5         -0.0061               0        6e+03        9.2    0.031     -5.9    -
    5               0            -1.6            -1.5         -0.0061               0        6e+03        9.2    0.016    -0.46    -
    6          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7     0.16        1   ++
    7          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7    0.078      -85    -
    8          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7    0.039      -56    -
    9          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7     0.02      -34    -
   10          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7   0.0098      -18    -
   11          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7   0.0049     -8.9    -
   12          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7   0.0024     -4.1    -
   13          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7   0.0012     -1.9    -
   14          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  0.00061     -1.3    -
   15          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  0.00031     -1.1    -
   16          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  0.00015    -0.98    -
   17          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  7.6e-05    -0.94    -
   18          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  3.8e-05    -0.91    -
   19          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  1.9e-05     -0.9    -
   20          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  9.5e-06     -0.9    -
   21          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  4.8e-06     -0.9    -
   22          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  2.4e-06    -0.89    -
   23          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  1.2e-06    -0.89    -
   24          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7    6e-07    -0.89    -
   25          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7    3e-07    -0.89    -
   26          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  1.5e-07    -0.89    -
   27          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  7.5e-08    -0.89    -
   28          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  3.7e-08    -0.89    -
   29          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  1.9e-08    -0.89    -
   30          -0.016            -1.6            -1.5          -0.014          -0.013      5.8e+03        1.7  9.3e-09    -0.89    -
Optimization algorithm has *not* converged.
Algorithm: Newton with trust region for simple bound constraints
Cause of termination: Trust region is too small: 9.313225746154779e-09
Number of iterations: 31
Proportion of Hessian calculation: 2/2 = 100.0%
Optimization time: 0:00:00.579574
Calculate second derivatives and BHHH
It seems that the optimization algorithm did not converge. Therefore, the results may not correspond to the maximum likelihood estimator. Check the specification of the model, or the criteria for convergence of the algorithm.
File b22multiple_models_000002~00.html has been generated.
File b22multiple_models_000002~00.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22multiple_models_000003.iter
Parameter values restored from __b22multiple_models_000003.iter
Starting values for the algorithm: {'asc_train_ref': -0.37489922058477093, 'asc_train_diff_male': -1.171233665542124, 'asc_train_diff_with_ga': 2.1303933360865916, 'b_time': -1.6276384300357265, 'b_cost': -1.5013784331569677, 'asc_car_ref': -0.553122728238362, 'asc_car_diff_male': 0.4598529086351089, 'asc_car_diff_with_ga': -1.99738873512378}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0               0            -1.6            -1.5               0      6.9e+03       0.24      0.5    0.067    -
    1               0            -1.6            -1.5               0      6.9e+03       0.24     0.25    0.088    -
    2           -0.25            -1.9            -1.3           -0.12      6.8e+03       0.23     0.25     0.18    +
    3            -0.5            -2.1              -1           -0.24      6.7e+03       0.25     0.25     0.17    +
    4           -0.75            -2.4           -0.75           -0.34      6.6e+03       0.27     0.25     0.15    +
    5              -1            -2.6            -0.5           -0.43      6.6e+03       0.29     0.25     0.14    +
    6            -1.2            -2.9           -0.25           -0.51      6.5e+03       0.31     0.25     0.13    +
    7            -1.5            -3.1         -0.0014           -0.59      6.4e+03       0.33     0.25     0.11    +
    8            -1.8            -3.4            0.25           -0.66      6.4e+03       0.35     0.25      0.1    +
    9            -1.8            -3.4            0.25           -0.66      6.4e+03       0.35     0.12    0.092    -
   10            -1.9            -3.5            0.37           -0.73      6.3e+03       0.37     0.12      0.2    +
   11              -2            -3.6             0.5            -0.8      6.3e+03       0.39     0.12     0.18    +
   12            -2.1            -3.8            0.62           -0.86      6.3e+03        0.4     0.12     0.17    +
   13            -2.2            -3.9            0.75           -0.91      6.2e+03       0.42     0.12     0.15    +
   14            -2.4              -4            0.87           -0.96      6.2e+03       0.44     0.12     0.13    +
   15            -2.5            -4.1               1              -1      6.2e+03       0.46     0.12     0.12    +
   16            -2.6            -4.3             1.1              -1      6.1e+03       0.47     0.12     0.11    +
   17            -2.6            -4.3             1.1              -1      6.1e+03       0.47    0.062    0.093    -
   18            -2.7            -4.3             1.2            -1.1      6.1e+03       0.48    0.062     0.22    +
   19            -2.8            -4.4             1.2            -1.1      6.1e+03       0.48    0.062      0.2    +
   20            -2.8            -4.4             1.3            -1.2      6.1e+03       0.49    0.062     0.17    +
   21            -2.9            -4.5             1.4            -1.2      6.1e+03       0.49    0.062     0.16    +
   22            -2.9            -4.6             1.4            -1.2        6e+03        0.5    0.062     0.14    +
   23              -3            -4.6             1.5            -1.2        6e+03       0.51    0.062     0.12    +
   24            -3.1            -4.7             1.6            -1.2        6e+03       0.51    0.062     0.11    +
   25            -3.1            -4.7             1.6            -1.2        6e+03       0.51    0.031    0.099    -
   26            -3.1            -4.7             1.6            -1.3        6e+03       0.52    0.031     0.15    +
   27            -3.1            -4.8             1.6            -1.3        6e+03       0.52    0.031     0.14    +
   28            -3.2            -4.8             1.7            -1.3        6e+03       0.52    0.031     0.12    +
   29            -3.2            -4.8             1.7            -1.3        6e+03       0.53    0.031     0.11    +
   30            -3.2            -4.8             1.7            -1.3        6e+03       0.53    0.016    0.099    -
   31            -3.2            -4.8             1.7            -1.3        6e+03       0.53    0.016      0.2    +
   32            -3.2            -4.8             1.7            -1.3        6e+03       0.53    0.016     0.18    +
   33            -3.2            -4.9             1.7            -1.3        6e+03       0.53    0.016     0.16    +
   34            -3.2            -4.9             1.7            -1.3        6e+03       0.53    0.016     0.14    +
   35            -3.3            -4.9             1.8            -1.3        6e+03       0.53    0.016     0.13    +
   36            -3.3            -4.9             1.8            -1.3        6e+03       0.53    0.016     0.11    +
   37            -3.3            -4.9             1.8            -1.4        6e+03       0.53    0.016      0.1    +
   38            -3.3            -4.9             1.8            -1.4        6e+03       0.53   0.0078    0.089    -
   39            -3.3            -4.9             1.8            -1.4        6e+03       0.54   0.0078     0.18    +
   40            -3.3            -4.9             1.8            -1.4        6e+03       0.54   0.0078     0.16    +
   41            -3.3            -4.9             1.8            -1.4        6e+03       0.54   0.0078     0.14    +
   42            -3.3              -5             1.8            -1.4        6e+03       0.54   0.0078     0.13    +
   43            -3.3              -5             1.8            -1.4        6e+03       0.54   0.0078     0.11    +
   44            -3.3              -5             1.8            -1.4        6e+03       0.54   0.0078      0.1    +
   45            -3.3              -5             1.8            -1.4        6e+03       0.54   0.0039     0.09    -
   46            -3.3              -5             1.8            -1.4        6e+03       0.54   0.0039     0.18    +
   47            -3.4              -5             1.9            -1.4        6e+03       0.54   0.0039     0.16    +
   48            -3.4              -5             1.9            -1.4        6e+03       0.54   0.0039     0.14    +
   49            -3.4              -5             1.9            -1.4        6e+03       0.54   0.0039     0.13    +
   50            -3.4              -5             1.9            -1.4        6e+03       0.54   0.0039     0.11    +
   51            -3.4              -5             1.9            -1.4        6e+03       0.54   0.0039      0.1    +
   52            -3.4              -5             1.9            -1.4        6e+03       0.54    0.002     0.09    -
   53            -3.4              -5             1.9            -1.4        6e+03       0.54    0.002     0.18    +
   54            -3.4              -5             1.9            -1.4        6e+03       0.54    0.002     0.16    +
   55            -3.4              -5             1.9            -1.4        6e+03       0.54    0.002     0.14    +
   56            -3.4              -5             1.9            -1.4      5.9e+03       0.54    0.002     0.13    +
   57            -3.4              -5             1.9            -1.4      5.9e+03       0.54    0.002     0.11    +
   58            -3.4              -5             1.9            -1.4      5.9e+03       0.54    0.002      0.1    +
   59            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00098    0.091    -
   60            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00098     0.18    +
   61            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00098     0.16    +
   62            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00098     0.14    +
   63            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00098     0.13    +
   64            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00098     0.12    +
   65            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00098      0.1    +
   66            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00049    0.092    -
   67            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00049     0.18    +
   68            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00049     0.16    +
   69            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00049     0.15    +
   70            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00049     0.13    +
   71            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00049     0.12    +
   72            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00049      0.1    +
   73            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00024    0.092    -
   74            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00024     0.18    +
   75            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00024     0.16    +
   76            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00024     0.15    +
   77            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00024     0.13    +
   78            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00024     0.12    +
   79            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00024      0.1    +
   80            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00012    0.093    -
   81            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00012     0.19    +
   82            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00012     0.17    +
   83            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00012     0.15    +
   84            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00012     0.13    +
   85            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00012     0.12    +
   86            -3.4              -5             1.9            -1.4      5.9e+03       0.54  0.00012      0.1    +
   87            -3.4              -5             1.9            -1.4      5.9e+03       0.54  6.1e-05    0.093    -
   88            -3.4              -5             1.9            -1.4      5.9e+03       0.54  6.1e-05     0.19    +
   89            -3.4              -5             1.9            -1.4      5.9e+03       0.54  6.1e-05     0.17    +
   90            -3.4              -5             1.9            -1.4      5.9e+03       0.54  6.1e-05     0.15    +
   91            -3.4              -5             1.9            -1.4      5.9e+03       0.54  6.1e-05     0.13    +
   92            -3.4              -5             1.9            -1.4      5.9e+03       0.54  6.1e-05     0.12    +
   93            -3.4              -5             1.9            -1.4      5.9e+03       0.54  6.1e-05     0.11    +
   94            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.1e-05    0.094    -
   95            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.1e-05     0.19    +
   96            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.1e-05     0.17    +
   97            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.1e-05     0.15    +
   98            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.1e-05     0.13    +
   99            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.1e-05     0.12    +
  100            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.1e-05     0.11    +
  101            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.5e-05    0.095    -
  102            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.5e-05     0.19    +
  103            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.5e-05     0.17    +
  104            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.5e-05     0.15    +
  105            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.5e-05     0.13    +
  106            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.5e-05     0.12    +
  107            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.5e-05     0.11    +
  108            -3.4              -5             1.9            -1.4      5.9e+03       0.54  7.6e-06    0.095    -
  109            -3.4              -5             1.9            -1.4      5.9e+03       0.54  7.6e-06     0.19    +
  110            -3.4              -5             1.9            -1.4      5.9e+03       0.54  7.6e-06     0.17    +
  111            -3.4              -5             1.9            -1.4      5.9e+03       0.54  7.6e-06     0.15    +
  112            -3.4              -5             1.9            -1.4      5.9e+03       0.54  7.6e-06     0.14    +
  113            -3.4              -5             1.9            -1.4      5.9e+03       0.54  7.6e-06     0.12    +
  114            -3.4              -5             1.9            -1.4      5.9e+03       0.54  7.6e-06     0.11    +
  115            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.8e-06    0.096    -
  116            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.8e-06     0.19    +
  117            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.8e-06     0.17    +
  118            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.8e-06     0.15    +
  119            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.8e-06     0.14    +
  120            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.8e-06     0.12    +
  121            -3.4              -5             1.9            -1.4      5.9e+03       0.54  3.8e-06     0.11    +
  122            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.9e-06    0.097    -
  123            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.9e-06     0.19    +
  124            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.9e-06     0.17    +
  125            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.9e-06     0.15    +
  126            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.9e-06     0.14    +
  127            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.9e-06     0.12    +
  128            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.9e-06     0.11    +
  129            -3.4              -5             1.9            -1.4      5.9e+03       0.54  9.5e-07    0.097    -
  130            -3.4              -5             1.9            -1.4      5.9e+03       0.54  9.5e-07     0.19    +
  131            -3.4              -5             1.9            -1.4      5.9e+03       0.54  9.5e-07     0.17    +
  132            -3.4              -5             1.9            -1.4      5.9e+03       0.54  9.5e-07     0.15    +
  133            -3.4              -5             1.9            -1.4      5.9e+03       0.54  9.5e-07     0.14    +
  134            -3.4              -5             1.9            -1.4      5.9e+03       0.54  9.5e-07     0.12    +
  135            -3.4              -5             1.9            -1.4      5.9e+03       0.54  9.5e-07     0.11    +
  136            -3.4              -5             1.9            -1.4      5.9e+03       0.54  4.8e-07    0.098    -
  137            -3.4              -5             1.9            -1.4      5.9e+03       0.54  4.8e-07      0.2    +
  138            -3.4              -5             1.9            -1.4      5.9e+03       0.54  4.8e-07     0.17    +
  139            -3.4              -5             1.9            -1.4      5.9e+03       0.54  4.8e-07     0.16    +
  140            -3.4              -5             1.9            -1.4      5.9e+03       0.54  4.8e-07     0.14    +
  141            -3.4              -5             1.9            -1.4      5.9e+03       0.54  4.8e-07     0.12    +
  142            -3.4              -5             1.9            -1.4      5.9e+03       0.54  4.8e-07     0.11    +
  143            -3.4              -5             1.9            -1.4      5.9e+03       0.54  2.4e-07    0.098    -
  144            -3.4              -5             1.9            -1.4      5.9e+03       0.54  2.4e-07      0.2    +
  145            -3.4              -5             1.9            -1.4      5.9e+03       0.54  2.4e-07     0.18    +
  146            -3.4              -5             1.9            -1.4      5.9e+03       0.54  2.4e-07     0.16    +
  147            -3.4              -5             1.9            -1.4      5.9e+03       0.54  2.4e-07     0.14    +
  148            -3.4              -5             1.9            -1.4      5.9e+03       0.54  2.4e-07     0.12    +
  149            -3.4              -5             1.9            -1.4      5.9e+03       0.54  2.4e-07     0.11    +
  150            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.2e-07    0.099    -
  151            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.2e-07      0.2    +
  152            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.2e-07     0.18    +
  153            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.2e-07     0.16    +
  154            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.2e-07     0.14    +
  155            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.2e-07     0.13    +
  156            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.2e-07     0.11    +
  157            -3.4              -5             1.9            -1.4      5.9e+03       0.54    6e-08      0.1    -
  158            -3.4              -5             1.9            -1.4      5.9e+03       0.54    6e-08      0.2    +
  159            -3.4              -5             1.9            -1.4      5.9e+03       0.54    6e-08     0.18    +
  160            -3.4              -5             1.9            -1.4      5.9e+03       0.54    6e-08     0.16    +
  161            -3.4              -5             1.9            -1.4      5.9e+03       0.54    6e-08     0.14    +
  162            -3.4              -5             1.9            -1.4      5.9e+03       0.54    6e-08     0.13    +
  163            -3.4              -5             1.9            -1.4      5.9e+03       0.54    6e-08     0.11    +
  164            -3.4              -5             1.9            -1.4      5.9e+03       0.54    6e-08     0.32    +
  165            -3.4              -5             1.9            -1.4      5.9e+03       0.54    3e-08    0.066    -
  166            -3.4              -5             1.9            -1.4      5.9e+03       0.54    3e-08     0.13    +
  167            -3.4              -5             1.9            -1.4      5.9e+03       0.54    3e-08     0.12    +
  168            -3.4              -5             1.9            -1.4      5.9e+03       0.54    3e-08     0.11    +
  169            -3.4              -5             1.9            -1.4      5.9e+03       0.54    3e-08     0.32    +
  170            -3.4              -5             1.9            -1.4      5.9e+03       0.54    3e-08     0.32    +
  171            -3.4              -5             1.9            -1.4      5.9e+03       0.54  1.5e-08        0    +
Optimization algorithm has *not* converged.
Algorithm: Newton with trust region for simple bound constraints
Cause of termination: Trust region is too small: 1.4901161193847656e-08
Number of iterations: 172
Proportion of Hessian calculation: 147/147 = 100.0%
Optimization time: 0:00:01.829430
Calculate second derivatives and BHHH
It seems that the optimization algorithm did not converge. Therefore, the results may not correspond to the maximum likelihood estimator. Check the specification of the model, or the criteria for convergence of the algorithm.
File b22multiple_models_000003~00.html has been generated.
File b22multiple_models_000003~00.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22multiple_models_000004.iter
Parameter values restored from __b22multiple_models_000004.iter
Starting values for the algorithm: {'asc_train': -0.25828520695319407, 'b_time': -3.317406744595399, 'b_cost': -2.35293555588282, 'b_headway': -0.005287158125190783, 'asc_car': -0.054528515119256514}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.42           -0.58            0.49            -4.3              -3           -0.36           -0.18           -0.22        6e+03       0.35        1     0.56    +
    1           -0.42           -0.58            0.49            -4.3              -3           -0.36           -0.18           -0.22        6e+03       0.35      0.5    -0.31    -
    2           -0.42           -0.58            0.49            -4.3              -3           -0.36           -0.18           -0.22        6e+03       0.35     0.25  0.00087    -
    3           -0.42           -0.58            0.49            -4.3              -3           -0.36           -0.18           -0.22        6e+03       0.35     0.12    -0.21    -
    4           -0.42           -0.58            0.49            -4.3              -3           -0.36           -0.18           -0.22        6e+03       0.35    0.062     -0.1    -
    5           -0.42           -0.58            0.49            -4.3              -3           -0.36           -0.18           -0.22        6e+03       0.35    0.031    0.072    -
    6           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32    0.031     0.11    +
    7           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32    0.016    0.017    -
    8           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32   0.0078    0.023    -
    9           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32   0.0039    0.012    -
   10           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32    0.002    -0.15    -
   11           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  0.00098    -0.15    -
   12           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  0.00049    -0.15    -
   13           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  0.00024    -0.15    -
   14           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  0.00012    -0.15    -
   15           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  6.1e-05    -0.15    -
   16           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  3.1e-05    -0.15    -
   17           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  1.5e-05    -0.15    -
   18           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  7.6e-06    -0.15    -
   19           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  3.8e-06    -0.15    -
   20           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  1.9e-06    -0.15    -
   21           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  9.5e-07    -0.15    -
   22           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  4.8e-07    -0.15    -
   23           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  2.4e-07    -0.15    -
   24           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  1.2e-07    -0.15    -
   25           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32    6e-08    -0.15    -
   26           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32    3e-08    -0.15    -
   27           -0.45           -0.61            0.52            -4.3              -3           -0.39           -0.18           -0.25        6e+03       0.32  1.5e-08    -0.15    -
Optimization algorithm has *not* converged.
Algorithm: Newton with trust region for simple bound constraints
Cause of termination: Trust region is too small: 1.4901161193847656e-08
Number of iterations: 28
Proportion of Hessian calculation: 3/3 = 100.0%
Optimization time: 0:00:00.907065
Calculate second derivatives and BHHH
It seems that the optimization algorithm did not converge. Therefore, the results may not correspond to the maximum likelihood estimator. Check the specification of the model, or the criteria for convergence of the algorithm.
File b22multiple_models_000004~00.html has been generated.
File b22multiple_models_000004~00.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22multiple_models_000005.iter
Parameter values restored from __b22multiple_models_000005.iter
Starting values for the algorithm: {'asc_train_ref': -1.2363986219196865, 'asc_train_diff_with_ga': 2.116104799141088, 'b_time': -2.936778941355896, 'b_cost': -1.472890077438725, 'asc_car_ref': -0.18981688978327133, 'asc_car_diff_with_ga': -1.8968233567325306}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54      0.5    -0.94    -
    1            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54     0.25    -0.94    -
    2            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54     0.12    -0.94    -
    3            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54    0.062    -0.94    -
    4            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54    0.031    -0.94    -
    5            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54    0.016    -0.94    -
    6            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54   0.0078    -0.94    -
    7            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54   0.0039    -0.94    -
    8            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54    0.002    -0.94    -
    9            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  0.00098    -0.94    -
   10            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  0.00049    -0.94    -
   11            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  0.00024    -0.94    -
   12            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  0.00012    -0.94    -
   13            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  6.1e-05    -0.94    -
   14            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  3.1e-05    -0.94    -
   15            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  1.5e-05    -0.94    -
   16            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  7.6e-06    -0.94    -
   17            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  3.8e-06    -0.94    -
   18            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  1.9e-06    -0.94    -
   19            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  9.5e-07    -0.94    -
   20            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  4.8e-07    -0.94    -
   21            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  2.4e-07    -0.94    -
   22            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  1.2e-07    -0.94    -
   23            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54    6e-08    -0.94    -
   24            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54    3e-08    -0.94    -
   25            -1.2             2.1            -2.9            -1.5               0           -0.19            -1.9      2.2e+05       0.54  1.5e-08    -0.94    -
Optimization algorithm has *not* converged.
Algorithm: Newton with trust region for simple bound constraints
Cause of termination: Trust region is too small: 1.4901161193847656e-08
Number of iterations: 26
Proportion of Hessian calculation: 1/1 = 100.0%
Optimization time: 0:00:00.763071
Calculate second derivatives and BHHH
It seems that the optimization algorithm did not converge. Therefore, the results may not correspond to the maximum likelihood estimator. Check the specification of the model, or the criteria for convergence of the algorithm.
File b22multiple_models_000005~00.html has been generated.
File b22multiple_models_000005~00.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22multiple_models_000006.iter
Parameter values restored from __b22multiple_models_000006.iter
Starting values for the algorithm: {'asc_train': -0.5046852334057811, 'b_time': -3.3215566932569422, 'b_cost': -2.3520626243030707, 'asc_car': 0.05192169085145166}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0               0               0            -3.3            -2.4               0               0      8.7e+03        0.4      0.5    -0.27    -
    1               0               0            -3.3            -2.4               0               0      8.7e+03        0.4     0.25    -0.16    -
    2               0               0            -3.3            -2.4               0               0      8.7e+03        0.4     0.12    -0.11    -
    3               0               0            -3.3            -2.4               0               0      8.7e+03        0.4    0.062    -0.09    -
    4               0               0            -3.3            -2.4               0               0      8.7e+03        0.4    0.031    -0.08    -
    5               0               0            -3.3            -2.4               0               0      8.7e+03        0.4    0.016   -0.074    -
    6               0               0            -3.3            -2.4               0               0      8.7e+03        0.4   0.0078   -0.072    -
    7               0               0            -3.3            -2.4               0               0      8.7e+03        0.4   0.0039    -0.07    -
    8               0               0            -3.3            -2.4               0               0      8.7e+03        0.4    0.002    -0.07    -
    9               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  0.00098   -0.069    -
   10               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  0.00049   -0.069    -
   11               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  0.00024   -0.069    -
   12               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  0.00012   -0.069    -
   13               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  6.1e-05   -0.069    -
   14               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  3.1e-05   -0.069    -
   15               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  1.5e-05   -0.069    -
   16               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  7.6e-06   -0.069    -
   17               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  3.8e-06   -0.069    -
   18               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  1.9e-06   -0.069    -
   19               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  9.5e-07   -0.069    -
   20               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  4.8e-07   -0.069    -
   21               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  2.4e-07   -0.069    -
   22               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  1.2e-07   -0.069    -
   23               0               0            -3.3            -2.4               0               0      8.7e+03        0.4    6e-08   -0.069    -
   24               0               0            -3.3            -2.4               0               0      8.7e+03        0.4    3e-08   -0.069    -
   25               0               0            -3.3            -2.4               0               0      8.7e+03        0.4  1.5e-08   -0.069    -
Optimization algorithm has *not* converged.
Algorithm: Newton with trust region for simple bound constraints
Cause of termination: Trust region is too small: 1.4901161193847656e-08
Number of iterations: 26
Proportion of Hessian calculation: 1/1 = 100.0%
Optimization time: 0:00:00.637017
Calculate second derivatives and BHHH
It seems that the optimization algorithm did not converge. Therefore, the results may not correspond to the maximum likelihood estimator. Check the specification of the model, or the criteria for convergence of the algorithm.
File b22multiple_models_000006~00.html has been generated.
File b22multiple_models_000006~00.yaml has been generated.
Pareto: 7
Considered: 474
Removed: 26
summary, description = compile_estimation_results(
    non_dominated_models, use_short_names=True
)
print(summary)
                                      Model_000000  ...    Model_000006
Number of estimated parameters                   9  ...               6
Sample size                                   6768  ...            6768
Final log likelihood                      -4810.59  ...       -5837.478
Akaike Information Criterion               9639.18  ...        11686.96
Bayesian Information Criterion             9700.56  ...        11727.88
asc_train_ref (t-test)           -0.0737  (-0.705)  ...          0  (0)
asc_train_diff_male (t-test)        -1.16  (-13.7)  ...
asc_train_diff_with_ga (t-test)       2.11  (23.1)  ...          0  (0)
b_time (t-test)                     -1.61  (-20.2)  ...  -3.32  (-17.8)
b_cost (t-test)                     -1.49  (-18.4)  ...  -2.35  (-20.1)
b_headway (t-test)               -0.00664  (-6.15)  ...
asc_car_ref (t-test)               -0.696  (-6.52)  ...          0  (0)
asc_car_diff_male (t-test)           0.474  (4.39)  ...
asc_car_diff_with_ga (t-test)          -2  (-9.32)  ...          0  (0)
lambda_tt (t-test)                                  ...
asc_train (t-test)                                  ...
asc_car (t-test)                                    ...

[17 rows x 7 columns]

Explanation of the short names of the model.

for k, v in description.items():
    if k != v:
        print(f'{k}: {v}')
Model_000000: asc:MALE-GA;train_cost_catalog:log;train_headway_catalog:with_headway;train_tt_catalog:log
Model_000001: asc:MALE-GA;train_cost_catalog:log;train_headway_catalog:with_headway;train_tt_catalog:boxcox
Model_000002: asc:no_seg;train_cost_catalog:sqrt;train_headway_catalog:with_headway;train_tt_catalog:sqrt
Model_000003: asc:no_seg;train_cost_catalog:sqrt;train_headway_catalog:without_headway;train_tt_catalog:sqrt
Model_000004: asc:MALE-GA;train_cost_catalog:log;train_headway_catalog:without_headway;train_tt_catalog:log
Model_000005: asc:GA;train_cost_catalog:log;train_headway_catalog:with_headway;train_tt_catalog:log
Model_000006: asc:GA;train_cost_catalog:log;train_headway_catalog:without_headway;train_tt_catalog:sqrt

Total running time of the script: (4 minutes 35.728 seconds)

Gallery generated by Sphinx-Gallery