WESML

Example of a logit model with Weighted Exogenous Sample Maximum Likelihood (WESML).

author:

Michel Bierlaire, EPFL

date:

Sun Apr 9 17:02:59 2023

import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta

See the data processing script: Data preparation for Swissmetro.

from swissmetro_data import (
    database,
    CHOICE,
    SM_AV,
    CAR_AV_SP,
    TRAIN_AV_SP,
    TRAIN_TT_SCALED,
    TRAIN_COST_SCALED,
    SM_TT_SCALED,
    SM_COST_SCALED,
    CAR_TT_SCALED,
    CAR_CO_SCALED,
    GROUP,
)

Parameters to be estimated.

ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
ASC_SM = Beta('ASC_SM', 0, None, None, 1)
B_TIME = Beta('B_TIME', 0, None, None, 0)
B_COST = Beta('B_COST', 0, None, None, 0)

Definition of the utility functions.

V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED
V2 = ASC_SM + B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED
V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

V = {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Definition of the model.

This is the contribution of each observation to the log likelihood function.

logprob = models.loglogit(V, av, CHOICE)

Definition of the weight.

weight = 8.890991e-01 * (1.0 * (GROUP == 2) + 1.2 * (GROUP == 3))

These notes will be included as such in the report file.

USER_NOTES = (
    'Example of a logit model with three alternatives: '
    'Train, Car and Swissmetro.'
    ' Weighted Exogenous Sample Maximum Likelihood estimator (WESML)'
)

Create the Biogeme object

formulas = {'log_like': logprob, 'weight': weight}
the_biogeme = bio.BIOGEME(database, formulas, user_notes=USER_NOTES)
the_biogeme.modelName = 'b02weight'

It is possible to control the generation of the HTML and the pickle .py. Note that these parameters can also be modified in the .TOML configuration file.

the_biogeme.generate_html = True
the_biogeme.generate_pickle = False

Estimate the parameters.

results = the_biogeme.estimate()
print(results.short_summary())
Results for model b02weight
Nbr of parameters:              4
Sample size:                    6768
Excluded data:                  3960
Final log likelihood:           -5273.743
Akaike Information Criterion:   10555.49
Bayesian Information Criterion: 10582.77

Get the results in a pandas table

pandas_results = results.get_estimated_parameters()
pandas_results
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR -0.114315 0.058312 -1.960402 0.049949
ASC_TRAIN -0.756521 0.083257 -9.086524 0.000000
B_COST -1.119658 0.067679 -16.543708 0.000000
B_TIME -1.321529 0.103658 -12.748875 0.000000


Total running time of the script: (0 minutes 0.170 seconds)

Gallery generated by Sphinx-Gallery