Note
Go to the end to download the full example code.
Heteroscedastic specificationΒΆ
Illustrates a heteroscedastic specification. A different scale is associated with different segments of the sample.
Michel Bierlaire, EPFL Wed Jun 18 2025, 11:25:26
from IPython.core.display_functions import display
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta
from biogeme.models import loglogit
from biogeme.results_processing import get_pandas_estimated_parameters
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
GROUP,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_time = Beta('b_time', 0, None, None, 0)
b_cost = Beta('b_cost', 0, None, None, 0)
scale_group3 = Beta('scale_group3', 1, 0.001, None, 0)
Definition of the utility functions.
v_train = asc_train + b_time * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Scale associated with group 3 is estimated.
scale = (GROUP != 3) + (GROUP == 3) * scale_group3
Scale the utility functions, and associate them with the numbering of alternatives.
v = {1: scale * v_train, 2: scale * v_swissmetro, 3: scale * v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Definition of the model. This is the contribution of each observation to the log likelihood function.
logprob = loglogit(v, av, CHOICE)
These notes will be included as such in the report file.
USER_NOTES = (
'Illustrates heteroscedastic specification. A different scale is'
' associated with different segments of the sample.'
)
Create the Biogeme object.
the_biogeme = BIOGEME(database, logprob, user_notes=USER_NOTES)
the_biogeme.model_name = 'b03scale'
Estimate the parameters.
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b03scale
Nbr of parameters: 5
Sample size: 6768
Excluded data: 3960
Final log likelihood: -4976.691
Akaike Information Criterion: 9963.381
Bayesian Information Criterion: 9997.481
Get the results in a pandas table
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 scale_group3 4.177737 0.370552 11.274371 0.000000
1 asc_train -0.447096 0.041146 -10.866099 0.000000
2 b_time -0.374455 0.044514 -8.412151 0.000000
3 b_cost -0.357349 0.038418 -9.301647 0.000000
4 asc_car -0.015332 0.018508 -0.828415 0.407435
Total running time of the script: (0 minutes 1.020 seconds)