Note
Go to the end to download the full example code.
Triangular mixture with panel dataΒΆ
Example of a mixture of logit models, using Monte-Carlo integration. The mixing distribution is user-defined (triangular, here). The datafile is organized as panel data.
Michel Bierlaire, EPFL
import numpy as np
from IPython.core.display_functions import display
import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.draws import RandomNumberGeneratorTuple
from biogeme.expressions import (
Beta,
Draws,
MonteCarlo,
PanelLikelihoodTrajectory,
log,
)
from biogeme.models import logit
from biogeme.results_processing import (
EstimationResults,
get_pandas_estimated_parameters,
)
See the data processing script: Panel data preparation for Swissmetro.
from swissmetro_panel import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b26triangular_panel_mixture.py')
Example b26triangular_panel_mixture.py
Function generating the draws.
def the_triangular_generator(sample_size: int, number_of_draws: int) -> np.ndarray:
"""
Provide my own random number generator to the database.
See the `numpy.random` documentation to obtain a list of other distributions.
"""
return np.random.triangular(-1, 0, 1, (sample_size, number_of_draws))
Associate the function with a name.
my_random_number_generators = {
'TRIANGULAR': RandomNumberGeneratorTuple(
the_triangular_generator,
'Draws from a triangular distribution',
)
}
Parameters to be estimated.
b_cost = Beta('b_cost', 0, None, None, 0)
Define a random parameter, normally distributed across individuals, designed to be used for Monte-Carlo simulation.
Mean of the distribution.
b_time = Beta('b_time', 0, None, None, 0)
Scale of the distribution. It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 1, None, None, 0)
b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'TRIANGULAR')
We do the same for the constants, to address serial correlation.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_car_s = Beta('asc_car_s', 1, None, None, 0)
asc_car_rnd = asc_car + asc_car_s * Draws('asc_car_rnd', 'TRIANGULAR')
asc_train = Beta('asc_train', 0, None, None, 0)
asc_train_s = Beta('asc_train_s', 1, None, None, 0)
asc_train_rnd = asc_train + asc_train_s * Draws('asc_train_rnd', 'TRIANGULAR')
asc_sm = Beta('asc_sm', 0, None, None, 1)
asc_sm_s = Beta('asc_sm_s', 1, None, None, 0)
asc_sm_rnd = asc_sm + asc_sm_s * Draws('asc_sm_rnd', 'TRIANGULAR')
Definition of the utility functions.
v_train = asc_train_rnd + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm_rnd + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car_rnd + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional to the random parameters, the likelihood of one observation is given by the logit model (called the kernel).
one_observation_conditional_probability = logit(v, av, CHOICE)
Conditional on the random parameters, the likelihood of all observations for one individual (the trajectory) is the product of the likelihood of each observation.
trajectory_conditional_probability = PanelLikelihoodTrajectory(
one_observation_conditional_probability
)
We integrate over the random parameters using Monte-Carlo
log_probability = log(MonteCarlo(trajectory_conditional_probability))
the_biogeme = BIOGEME(
database,
log_probability,
random_number_generators=my_random_number_generators,
number_of_draws=10_000,
seed=1223,
)
the_biogeme.model_name = 'b26triangular_panel_mixture'
Biogeme parameters read from biogeme.toml.
Flattening database [(6768, 38)].
Database flattened [(752, 362)]
Flattening database [(6768, 38)].
Database flattened [(752, 362)]
Flattening database [(6768, 38)].
Database flattened [(752, 362)]
Flattening database [(6768, 38)].
Database flattened [(752, 362)]
Estimate the parameters.
try:
results = EstimationResults.from_yaml_file(
filename='saved_results/b26triangular_panel_mixture.yaml'
)
except FileNotFoundError:
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b26triangular_panel_mixture
Nbr of parameters: 8
Sample size: 752
Observations: 6768
Excluded data: 0
Final log likelihood: -3593.921
Akaike Information Criterion: 7203.842
Bayesian Information Criterion: 7240.824
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train -0.357907 0.232508 -1.539332 1.237234e-01
1 asc_train_s 5.672924 0.756461 7.499296 6.417089e-14
2 b_time -6.078874 0.359765 -16.896772 0.000000e+00
3 b_time_s 8.941038 0.538493 16.603824 0.000000e+00
4 b_cost -3.282904 0.426908 -7.689959 1.465494e-14
5 asc_sm_s 3.492176 0.666815 5.237095 1.631240e-07
6 asc_car 0.355111 0.245255 1.447926 1.476377e-01
7 asc_car_s 9.534559 0.836263 11.401385 0.000000e+00
Total running time of the script: (0 minutes 11.087 seconds)