Note
Go to the end to download the full example code.
Mixtures of logit with Monte-Carlo 10_000 MLHS drawsΒΆ
Estimation of a mixtures of logit models where the integral is approximated using MonteCarlo integration with MLHS draws.
Michel Bierlaire, EPFL Tue Apr 29 2025, 12:17:03
from b07estimation_specification import get_biogeme
from IPython.core.display_functions import display
import biogeme.biogeme_logging as blog
from biogeme.expressions import Draws
from biogeme.results_processing import (
EstimationResults,
get_pandas_estimated_parameters,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b07estimation_monte_carlo_mlhs.py')
Example b07estimation_monte_carlo_mlhs.py
R = 10_000
the_draws = Draws('b_time_rnd', 'NORMAL_MLHS')
the_biogeme = get_biogeme(the_draws=the_draws, number_of_draws=R)
the_biogeme.model_name = 'b07estimation_monte_carlo_mlhs'
results_file = f'saved_results/{the_biogeme.model_name}.yaml'
Biogeme parameters read from biogeme.toml.
try:
results = EstimationResults.from_yaml_file(filename=results_file)
except FileNotFoundError:
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b07estimation_monte_carlo_mlhs
Nbr of parameters: 5
Sample size: 10719
Excluded data: 9
Final log likelihood: -8571.055
Akaike Information Criterion: 17152.11
Bayesian Information Criterion: 17188.51
Get the results in a pandas table
pandas_results = get_pandas_estimated_parameters(
estimation_results=results,
)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train -0.467310 0.047975 -9.740668 0.000000e+00
1 b_time -1.862710 0.075854 -24.556570 0.000000e+00
2 b_time_s 1.206771 0.087492 13.793007 0.000000e+00
3 b_cost -0.845475 0.057652 -14.665121 0.000000e+00
4 asc_car 0.180120 0.035150 5.124271 2.986908e-07
Total running time of the script: (0 minutes 42.304 seconds)