Note
Go to the end to download the full example code.
Mixture with lognormal distributionΒΆ
Example of a mixture of logit models. The mixing distribution is distributed as a log normal. Compared to Mixture with lognormal distribution, the integration is performed using numerical integration instead of Monte-Carlo approximation.
Michel Bierlaire, EPFL Thu Jun 26 2025, 15:49:37
import biogeme.biogeme_logging as blog
from IPython.core.display_functions import display
from biogeme.biogeme import BIOGEME
from biogeme.expressions import (
Beta,
IntegrateNormal,
RandomVariable,
exp,
log,
)
from biogeme.models import logit
from biogeme.results_processing import get_pandas_estimated_parameters
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b17lognormal_mixture_integral.py')
Example b17lognormal_mixture_integral.py
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)
Define a random parameter, normally distributed, designed to be used. for Monte-Carlo simulation
b_time = Beta('b_time', 0, None, None, 0)
It is advised not to use 0 as starting value for the following parameter..
b_time_s = Beta('b_time_s', 1, -2, 2, 0)
Define a random parameter, log normally distributed, designed to be used for numerical integration.
omega = RandomVariable('omega')
B_TIME_RND = -exp(b_time + b_time_s * omega)
Definition of the utility functions.
v_train = asc_train + B_TIME_RND * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + B_TIME_RND * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + B_TIME_RND * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional to omega, we have a logit model (called the kernel).
conditional_probability = logit(v, av, CHOICE)
We integrate over omega using numerical integration.
log_probability = log(IntegrateNormal(conditional_probability, 'omega'))
Create the Biogeme object.
the_biogeme = BIOGEME(database, log_probability)
the_biogeme.model_name = 'b17lognormal_mixture_integral'
Biogeme parameters read from biogeme.toml.
Estimate the parameters
results = the_biogeme.estimate()
*** Initial values of the parameters are obtained from the file __b17lognormal_mixture_integral.iter
Parameter values restored from __b17lognormal_mixture_integral.iter
Starting values for the algorithm: {'asc_train': -0.3508670994332833, 'b_time': 0.5699481745949635, 'b_time_s': 1.2138204557723493, 'b_cost': -1.3762554626050059, 'asc_car': 0.16780371550483728}
As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the algorithm from "automatic" to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Optimization algorithm has converged.
Relative gradient: 3.8488160574638475e-06
Cause of termination: Relative gradient = 3.8e-06 <= 6.1e-06
Number of function evaluations: 1
Number of gradient evaluations: 1
Number of hessian evaluations: 0
Algorithm: BFGS with trust region for simple bound constraints
Number of iterations: 0
Optimization time: 0:00:00.862432
Calculate second derivatives and BHHH
File b17lognormal_mixture_integral~00.html has been generated.
File b17lognormal_mixture_integral~00.yaml has been generated.
print(results.short_summary())
Results for model b17lognormal_mixture_integral
Nbr of parameters: 5
Sample size: 6768
Excluded data: 3960
Final log likelihood: -5231.506
Akaike Information Criterion: 10473.01
Bayesian Information Criterion: 10507.11
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train -0.350867 0.073180 -4.794581 1.630150e-06
1 b_time 0.569948 0.070411 8.094634 6.661338e-16
2 b_time_s 1.213820 0.141278 8.591690 0.000000e+00
3 b_cost -1.376255 0.096032 -14.331261 0.000000e+00
4 asc_car 0.167804 0.063408 2.646410 8.135116e-03
Total running time of the script: (0 minutes 4.534 seconds)