Mixture of logit models

Example of a uniform mixture of logit models, using Monte-Carlo

integration. The mixing distribution is uniform. The draws are from the Modified Hypercube Latin Square.

author:

Michel Bierlaire, EPFL

date:

Sun Apr 9 17:50:28 2023

import biogeme.biogeme_logging as blog
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import (
    Beta,
    bioDraws,
    exp,
    log,
    MonteCarlo,
)
from biogeme.parameters import Parameters

See the data processing script: Data preparation for Swissmetro.

from swissmetro_data import (
    database,
    CHOICE,
    SM_AV,
    CAR_AV_SP,
    TRAIN_AV_SP,
    TRAIN_TT_SCALED,
    TRAIN_COST_SCALED,
    SM_TT_SCALED,
    SM_COST_SCALED,
    CAR_TT_SCALED,
    CAR_CO_SCALED,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b06unif_mixture_MHLS')
Example b06unif_mixture_MHLS

Parameters to be estimated.

ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
ASC_SM = Beta('ASC_SM', 0, None, None, 1)
B_COST = Beta('B_COST', 0, None, None, 0)

Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation.

B_TIME = Beta('B_TIME', 0, None, None, 0)

It is advised not to use 0 as starting value for the following parameter.

B_TIME_S = Beta('B_TIME_S', 1, None, None, 0)

Define a random parameter, uniformly distributed, designed to be used for Monte-Carlo simulation. The type of draws is set to NORMAL_MLHS.

B_TIME_RND = B_TIME + B_TIME_S * bioDraws('b_time_rnd', 'NORMAL_MLHS')

Definition of the utility functions.

V1 = ASC_TRAIN + B_TIME_RND * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED
V2 = ASC_SM + B_TIME_RND * SM_TT_SCALED + B_COST * SM_COST_SCALED
V3 = ASC_CAR + B_TIME_RND * CAR_TT_SCALED + B_COST * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

V = {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Conditional on b_time_rnd, we have a logit model (called the kernel).

prob = exp(models.loglogit(V, av, CHOICE))

We integrate over b_time_rnd using Monte-Carlo

logprob = log(MonteCarlo(prob))

Create the Biogeme object.

the_biogeme = bio.BIOGEME(database, logprob, number_of_draws=100, seed=1223)
the_biogeme.modelName = '06unif_mixture_MHLS'
Biogeme parameters read from biogeme.toml.

Estimate the parameters.

results = the_biogeme.estimate()
As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds"
*** Initial values of the parameters are obtained from the file __06unif_mixture_MHLS.iter
Cannot read file __06unif_mixture_MHLS.iter. Statement is ignored.
The number of draws (100) is low. The results may not be meaningful.
As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds"
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Iter.         ASC_CAR       ASC_TRAIN          B_COST          B_TIME        B_TIME_S     Function    Relgrad   Radius      Rho
    0               1              -1              -1              -1               2      6.1e+03       0.16        1     0.25    +
    1               0           -0.75           -0.34              -2               3      5.5e+03      0.049        1     0.34    +
    2               0           -0.75           -0.34              -2               3      5.5e+03      0.049      0.5   -0.039    -
    3             0.5           -0.94           -0.84            -2.4             2.6      5.4e+03      0.043      0.5     0.48    +
    4               0           -0.44            -1.3            -2.2             2.4      5.3e+03      0.037      0.5     0.45    +
    5               0           -0.44            -1.3            -2.2             2.4      5.3e+03      0.037     0.25   -0.035    -
    6            0.16           -0.68            -1.4            -2.4             2.2      5.2e+03      0.017     0.25     0.54    +
    7           0.084           -0.43            -1.4            -2.5             2.1      5.2e+03     0.0088     0.25     0.73    +
    8           0.084           -0.43            -1.4            -2.5             2.1      5.2e+03     0.0088     0.12    -0.66    -
    9            0.21           -0.47            -1.4            -2.4             1.9      5.2e+03     0.0088     0.12     0.24    +
   10            0.17           -0.34            -1.3            -2.4             1.8      5.2e+03     0.0053     0.12     0.71    +
   11            0.17           -0.34            -1.3            -2.4             1.8      5.2e+03     0.0053    0.062     -1.4    -
   12            0.17           -0.34            -1.3            -2.4             1.8      5.2e+03     0.0053    0.031   -0.094    -
   13             0.2           -0.38            -1.3            -2.4             1.8      5.2e+03     0.0049    0.031      0.2    +
   14            0.17           -0.35            -1.3            -2.4             1.8      5.2e+03     0.0025    0.031      0.8    +
   15            0.18           -0.37            -1.3            -2.4             1.8      5.2e+03     0.0022    0.031     0.71    +
   16            0.15           -0.37            -1.3            -2.3             1.7      5.2e+03     0.0031    0.031     0.76    +
   17            0.16           -0.38            -1.3            -2.3             1.7      5.2e+03     0.0016    0.031     0.85    +
   18            0.14           -0.39            -1.3            -2.3             1.7      5.2e+03     0.0033    0.031     0.71    +
   19            0.15           -0.39            -1.3            -2.3             1.7      5.2e+03     0.0013    0.031     0.84    +
   20            0.14           -0.41            -1.3            -2.3             1.6      5.2e+03     0.0026    0.031     0.62    +
   21            0.12            -0.4            -1.3            -2.2             1.6      5.2e+03     0.0014    0.031     0.51    +
   22            0.12            -0.4            -1.3            -2.2             1.6      5.2e+03     0.0014    0.016     -1.7    -
   23            0.14           -0.41            -1.3            -2.2             1.6      5.2e+03      0.001    0.016     0.43    +
   24            0.13           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00038     0.16     0.94   ++
   25            0.13           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00038    0.078     -5.2    -
   26            0.13           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00038    0.039     -1.5    -
   27            0.13           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00038     0.02    -0.19    -
   28            0.13           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00079     0.02     0.32    +
   29            0.13           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00079   0.0098    -0.57    -
   30            0.13           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00079   0.0049    0.024    -
   31            0.12           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00035   0.0049     0.77    +
   32            0.12           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00027   0.0049     0.49    +
   33            0.12           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00031   0.0049     0.31    +
   34            0.12           -0.41            -1.3            -2.2             1.6      5.2e+03     0.0001   0.0049     0.59    +
Results saved in file 06unif_mixture_MHLS.html
Results saved in file 06unif_mixture_MHLS.pickle
print(results.short_summary())
Results for model 06unif_mixture_MHLS
Nbr of parameters:              5
Sample size:                    6768
Excluded data:                  3960
Final log likelihood:           -5222.242
Akaike Information Criterion:   10454.48
Bayesian Information Criterion: 10488.58
pandas_results = results.get_estimated_parameters()
pandas_results
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR 0.120649 0.051279 2.352793 1.863298e-02
ASC_TRAIN -0.416681 0.066089 -6.304893 2.883922e-10
B_COST -1.268828 0.085060 -14.916773 0.000000e+00
B_TIME -2.192215 0.115352 -19.004517 0.000000e+00
B_TIME_S 1.573228 0.135056 11.648741 0.000000e+00


Total running time of the script: (0 minutes 14.186 seconds)

Gallery generated by Sphinx-Gallery