Mixture of logit models

Example of a normal mixture of logit models, using Monte-Carlo integration.

author:

Michel Bierlaire, EPFL

date:

Sun Apr 9 17:30:14 2023

import biogeme.biogeme_logging as blog
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta, bioDraws, log, MonteCarlo

See the data processing script: Data preparation for Swissmetro.

from swissmetro_data import (
    database,
    CHOICE,
    SM_AV,
    CAR_AV_SP,
    TRAIN_AV_SP,
    TRAIN_TT_SCALED,
    TRAIN_COST_SCALED,
    SM_TT_SCALED,
    SM_COST_SCALED,
    CAR_TT_SCALED,
    CAR_CO_SCALED,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b05normal_mixtures.py')
Example b05normal_mixtures.py

Parameters to be estimated

ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0)
ASC_SM = Beta('ASC_SM', 0, None, None, 1)
B_COST = Beta('B_COST', 0, None, None, 0)

Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation.

B_TIME = Beta('B_TIME', 0, None, None, 0)

It is advised not to use 0 as starting value for the following parameter.

B_TIME_S = Beta('B_TIME_S', 1, None, None, 0)
B_TIME_RND = B_TIME + B_TIME_S * bioDraws('B_TIME_RND', 'NORMAL')

Definition of the utility functions.

V1 = ASC_TRAIN + B_TIME_RND * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED
V2 = ASC_SM + B_TIME_RND * SM_TT_SCALED + B_COST * SM_COST_SCALED
V3 = ASC_CAR + B_TIME_RND * CAR_TT_SCALED + B_COST * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

V = {1: V1, 2: V2, 3: V3}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Conditional to B_TIME_RND, we have a logit model (called the kernel).

prob = models.logit(V, av, CHOICE)

We integrate over B_TIME_RND using Monte-Carlo.

logprob = log(MonteCarlo(prob))

These notes will be included as such in the report file.

USER_NOTES = (
    'Example of a mixture of logit models with three alternatives, '
    'approximated using Monte-Carlo integration.'
)

Create the Biogeme object. As the objective is to illustrate the syntax, we calculate the Monte-Carlo approximation with a small number of draws. To achieve that, we provide a parameter file different from the default one.

the_biogeme = bio.BIOGEME(
    database, logprob, userNotes=USER_NOTES, parameter_file='few_draws.toml'
)
the_biogeme.modelName = 'b05normal_mixture'
File few_draws.toml has been parsed.
print(f'Number of draws: {the_biogeme.number_of_draws}')
Number of draws: 100

Estimate the parameters

results = the_biogeme.estimate()
*** Initial values of the parameters are obtained from the file __b05normal_mixture.iter
Cannot read file __b05normal_mixture.iter. Statement is ignored.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.         ASC_CAR       ASC_TRAIN          B_COST          B_TIME        B_TIME_S     Function    Relgrad   Radius      Rho
    0          -0.083            -0.8           -0.32              -1            0.87      5.4e+03      0.046       10        1   ++
    1           0.013           -0.57              -1            -1.6            0.92      5.2e+03     0.0082    1e+02      1.1   ++
    2           0.096           -0.43            -1.2              -2             1.4      5.2e+03     0.0041    1e+03      1.1   ++
    3            0.12           -0.41            -1.3            -2.2             1.6      5.2e+03    0.00069    1e+04      1.1   ++
    4            0.13           -0.41            -1.3            -2.2             1.6      5.2e+03    9.3e-06    1e+05        1   ++
    5            0.13           -0.41            -1.3            -2.2             1.6      5.2e+03    2.2e-09    1e+05        1   ++
Results saved in file b05normal_mixture.html
Results saved in file b05normal_mixture.pickle
print(results.short_summary())
Results for model b05normal_mixture
Nbr of parameters:              5
Sample size:                    6768
Excluded data:                  3960
Final log likelihood:           -5216.34
Akaike Information Criterion:   10442.68
Bayesian Information Criterion: 10476.78
pandas_results = results.getEstimatedParameters()
pandas_results
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR 0.126639 0.051638 2.452445 1.418890e-02
ASC_TRAIN -0.408591 0.065910 -6.199183 5.675691e-10
B_COST -1.280129 0.085585 -14.957358 0.000000e+00
B_TIME -2.224435 0.115421 -19.272284 0.000000e+00
B_TIME_S 1.606218 0.122634 13.097709 0.000000e+00


Total running time of the script: (0 minutes 8.466 seconds)

Gallery generated by Sphinx-Gallery