Binary logit model

Example of a binary logit model. Two alternatives: Train and Car.

author:

Michel Bierlaire, EPFL

date:

Wed Apr 12 17:58:18 2023

import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta

See the data processing script: Data preparation for Swissmetro (binary choice).

from swissmetro_binary import (
    database,
    CHOICE,
    TRAIN_AV_SP,
    CAR_AV_SP,
    TRAIN_TT_SCALED,
    TRAIN_COST_SCALED,
    CAR_TT_SCALED,
    CAR_CO_SCALED,
)

Parameters to be estimated.

ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
B_TIME_CAR = Beta('B_TIME_CAR', 0, None, None, 0)
B_TIME_TRAIN = Beta('B_TIME_TRAIN', 0, None, None, 0)
B_COST_CAR = Beta('B_COST_CAR', 0, None, None, 0)
B_COST_TRAIN = Beta('B_COST_TRAIN', 0, None, None, 0)

Definition of the utility functions. We estimate a binary logit model. There are only two alternatives.

V1 = B_TIME_TRAIN * TRAIN_TT_SCALED + B_COST_TRAIN * TRAIN_COST_SCALED
V3 = ASC_CAR + B_TIME_CAR * CAR_TT_SCALED + B_COST_CAR * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

V = {1: V1, 3: V3}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 3: CAR_AV_SP}

Definition of the model. This is the contribution of each observation to the log likelihood function.

logprob = models.loglogit(V, av, CHOICE)

Create the Biogeme object

the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme.modelName = 'b23logit'

Estimate the parameters

results = the_biogeme.estimate()
print(results.short_summary())
Results for model b23logit
Nbr of parameters:              5
Sample size:                    2678
Excluded data:                  8050
Final log likelihood:           -872.9052
Akaike Information Criterion:   1755.81
Bayesian Information Criterion: 1785.274
pandas_results = results.get_estimated_parameters()
pandas_results
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR -0.896101 0.178268 -5.026696 4.990013e-07
B_COST_CAR -1.088054 0.295942 -3.676576 2.363851e-04
B_COST_TRAIN -2.393364 0.272021 -8.798468 0.000000e+00
B_TIME_CAR -0.383847 0.310672 -1.235537 2.166306e-01
B_TIME_TRAIN -1.134867 0.210637 -5.387777 7.133434e-08


Total running time of the script: (0 minutes 0.154 seconds)

Gallery generated by Sphinx-Gallery