Note
Go to the end to download the full example code.
Binary logit model
Example of a binary logit model. Two alternatives: Train and Car.
- author:
Michel Bierlaire, EPFL
- date:
Wed Apr 12 17:58:18 2023
import biogeme.biogeme as bio
from biogeme import models
from biogeme.expressions import Beta
See the data processing script: Data preparation for Swissmetro (binary choice).
from swissmetro_binary import (
database,
CHOICE,
TRAIN_AV_SP,
CAR_AV_SP,
TRAIN_TT_SCALED,
TRAIN_COST_SCALED,
CAR_TT_SCALED,
CAR_CO_SCALED,
)
Parameters to be estimated.
ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
B_TIME_CAR = Beta('B_TIME_CAR', 0, None, None, 0)
B_TIME_TRAIN = Beta('B_TIME_TRAIN', 0, None, None, 0)
B_COST_CAR = Beta('B_COST_CAR', 0, None, None, 0)
B_COST_TRAIN = Beta('B_COST_TRAIN', 0, None, None, 0)
Definition of the utility functions. We estimate a binary logit model. There are only two alternatives.
V1 = B_TIME_TRAIN * TRAIN_TT_SCALED + B_COST_TRAIN * TRAIN_COST_SCALED
V3 = ASC_CAR + B_TIME_CAR * CAR_TT_SCALED + B_COST_CAR * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
V = {1: V1, 3: V3}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 3: CAR_AV_SP}
Definition of the model. This is the contribution of each observation to the log likelihood function.
logprob = models.loglogit(V, av, CHOICE)
Create the Biogeme object
the_biogeme = bio.BIOGEME(database, logprob)
the_biogeme.modelName = 'b23logit'
Estimate the parameters
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b23logit
Nbr of parameters: 5
Sample size: 2678
Excluded data: 8050
Final log likelihood: -872.9052
Akaike Information Criterion: 1755.81
Bayesian Information Criterion: 1785.274
pandas_results = results.get_estimated_parameters()
pandas_results
Total running time of the script: (0 minutes 0.154 seconds)