Note
Go to the end to download the full example code.
Mixture of logit with panel dataΒΆ
- Example of a mixture of logit models, using Monte-Carlo integration.
The datafile is organized as panel data.
Michel Bierlaire, EPFL Sat Jun 21 2025, 16:54:51
import numpy as np
from IPython.core.display_functions import display
import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, Draws, MonteCarlo, PanelLikelihoodTrajectory, log
from biogeme.models import logit
from biogeme.results_processing import (
EstimationResults,
get_pandas_estimated_parameters,
)
See the data processing script: Panel data preparation for Swissmetro.
from swissmetro_panel import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
# from biogeme.results_processing import get_pandas_estimated_parameters
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b12panel.py')
Example b12panel.py
We set the seed so that the results are reproducible. This is not necessary in general.
np.random.seed(seed=90267)
Parameters to be estimated.
b_cost = Beta('b_cost', 0, None, None, 0)
Define a random parameter, normally distributed across individuals, designed to be used for Monte-Carlo simulation.
b_time = Beta('b_time', 0, None, None, 0)
It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 1, None, None, 0)
b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'NORMAL_ANTI')
We do the same for the constants, to address serial correlation.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_car_s = Beta('asc_car_s', 1, None, None, 0)
asc_car_rnd = asc_car + asc_car_s * Draws('asc_car_rnd', 'NORMAL_ANTI')
asc_train = Beta('asc_train', 0, None, None, 0)
asc_train_s = Beta('asc_train_s', 1, None, None, 0)
asc_train_rnd = asc_train + asc_train_s * Draws('asc_train_rnd', 'NORMAL_ANTI')
asc_sm = Beta('asc_sm', 0, None, None, 0)
asc_sm_s = Beta('asc_sm_s', 1, None, None, 0)
asc_sm_rnd = asc_sm + asc_sm_s * Draws('asc_sm_rnd', 'NORMAL_ANTI')
Definition of the utility functions.
v_train = asc_train_rnd + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm_rnd + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car_rnd + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional on the random parameters, the likelihood of one observation is given by the logit model (called the kernel).
choice_probability_one_observation = logit(v, av, CHOICE)
Conditional on the random parameters, the likelihood of all observations for one individual (the trajectory) is the product of the likelihood of each observation.
conditional_trajectory_probability = PanelLikelihoodTrajectory(
choice_probability_one_observation
)
We integrate over the random parameters using Monte-Carlo
log_probability = log(MonteCarlo(conditional_trajectory_probability))
As the objective is to illustrate the syntax, we calculate the Monte-Carlo approximation with a small number of draws.
the_biogeme = BIOGEME(database, log_probability, number_of_draws=10000, seed=1223)
the_biogeme.model_name = 'b12panel'
Biogeme parameters read from biogeme.toml.
Flattening database [(6768, 38)].
Database flattened [(752, 362)]
Flattening database [(6768, 38)].
Database flattened [(752, 362)]
Flattening database [(6768, 38)].
Database flattened [(752, 362)]
Flattening database [(6768, 38)].
Database flattened [(752, 362)]
Estimate the parameters.
try:
results = EstimationResults.from_yaml_file(filename='saved_results/b12panel.yaml')
except FileNotFoundError:
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b12panel
Nbr of parameters: 9
Sample size: 752
Observations: 6768
Excluded data: 0
Final log likelihood: -3578.671
Akaike Information Criterion: 7175.341
Bayesian Information Criterion: 7216.946
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train 0.147614 0.147900 0.998068 3.182462e-01
1 asc_train_s 2.715929 0.259500 10.466003 0.000000e+00
2 b_time -6.016472 0.361328 -16.651000 0.000000e+00
3 b_time_s 3.510503 0.214154 16.392422 0.000000e+00
4 b_cost -3.606924 0.427857 -8.430201 0.000000e+00
5 asc_sm 0.594940 0.123182 4.829764 1.366947e-06
6 asc_sm_s -0.286424 0.283529 -1.010212 3.123938e-01
7 asc_car 0.935106 0.153905 6.075846 1.233354e-09
8 asc_car_s 4.057350 0.342115 11.859596 0.000000e+00
Total running time of the script: (0 minutes 9.410 seconds)