Note
Go to the end to download the full example code.
Timing of a logit modelΒΆ
Michel Bierlaire Tue Jul 2 14:48:52 2024
from tabulate import tabulate
See the data processing script: Data preparation for Swissmetro.
from biogeme.data.swissmetro import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
read_data,
)
from biogeme.expressions import Beta, Draws, MonteCarlo, log
from biogeme.models import logit
from timing_expression import timing_expression
Parameters to be estimated
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
b_cost = Beta('b_cost', 0, None, None, 0)
Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation.
b_time = Beta('b_time', 0, None, None, 0)
It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 1, None, None, 0)
b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'NORMAL')
Definition of the utility functions.
v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
V = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional to b_time_rnd, we have a logit model (called the kernel).
prob = logit(V, av, CHOICE)
We integrate over b_time_rnd using Monte-Carlo.
log_probability = log(MonteCarlo(prob))
database = read_data()
Number of draws
number_of_draws = 100
Timing
timing_results = timing_expression(
the_expression=log_probability,
the_database=database,
number_of_draws=number_of_draws,
)
results = [[k, f'{v:.3g}'] for k, v in timing_results.items()]
print(f'With {number_of_draws} draws...')
print(tabulate(results, headers=['', 'Time (in sec.)'], tablefmt='github'))
Number of draws
number_of_draws = 1000
Timing
timing_results = timing_expression(
the_expression=log_probability,
the_database=database,
number_of_draws=number_of_draws,
)
results = [[k, f'{v:.3g}'] for k, v in timing_results.items()]
print(f'With {number_of_draws} draws...')
print(tabulate(results, headers=['', 'Time (in sec.)'], tablefmt='github'))