.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/timing/plot03_mixtures.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_timing_plot03_mixtures.py: Timing of a logit model ======================= Michel Bierlaire Tue Jul 2 14:48:52 2024 .. GENERATED FROM PYTHON SOURCE LINES 9-12 .. code-block:: Python from tabulate import tabulate .. GENERATED FROM PYTHON SOURCE LINES 13-14 See the data processing script: :ref:`swissmetro_data`. .. GENERATED FROM PYTHON SOURCE LINES 14-31 .. code-block:: Python from biogeme.data.swissmetro import ( CAR_AV_SP, CAR_CO_SCALED, CAR_TT_SCALED, CHOICE, SM_AV, SM_COST_SCALED, SM_TT_SCALED, TRAIN_AV_SP, TRAIN_COST_SCALED, TRAIN_TT_SCALED, read_data, ) from biogeme.expressions import Beta, Draws, MonteCarlo, log from biogeme.models import logit from timing_expression import timing_expression .. GENERATED FROM PYTHON SOURCE LINES 32-33 Parameters to be estimated .. GENERATED FROM PYTHON SOURCE LINES 33-37 .. code-block:: Python asc_car = Beta('asc_car', 0, None, None, 0) asc_train = Beta('asc_train', 0, None, None, 0) b_cost = Beta('b_cost', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 38-40 Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation. .. GENERATED FROM PYTHON SOURCE LINES 40-42 .. code-block:: Python b_time = Beta('b_time', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 43-44 It is advised *not* to use 0 as starting value for the following parameter. .. GENERATED FROM PYTHON SOURCE LINES 44-47 .. code-block:: Python b_time_s = Beta('b_time_s', 1, None, None, 0) b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'NORMAL') .. GENERATED FROM PYTHON SOURCE LINES 48-49 Definition of the utility functions. .. GENERATED FROM PYTHON SOURCE LINES 49-53 .. code-block:: Python v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED v_swissmetro = b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 54-55 Associate utility functions with the numbering of alternatives. .. GENERATED FROM PYTHON SOURCE LINES 55-57 .. code-block:: Python V = {1: v_train, 2: v_swissmetro, 3: v_car} .. GENERATED FROM PYTHON SOURCE LINES 58-59 Associate the availability conditions with the alternatives. .. GENERATED FROM PYTHON SOURCE LINES 59-61 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 62-63 Conditional to b_time_rnd, we have a logit model (called the kernel). .. GENERATED FROM PYTHON SOURCE LINES 63-65 .. code-block:: Python prob = logit(V, av, CHOICE) .. GENERATED FROM PYTHON SOURCE LINES 66-67 We integrate over b_time_rnd using Monte-Carlo. .. GENERATED FROM PYTHON SOURCE LINES 67-69 .. code-block:: Python log_probability = log(MonteCarlo(prob)) .. GENERATED FROM PYTHON SOURCE LINES 70-72 .. code-block:: Python database = read_data() .. GENERATED FROM PYTHON SOURCE LINES 73-74 Number of draws .. GENERATED FROM PYTHON SOURCE LINES 74-77 .. code-block:: Python number_of_draws = 100 .. GENERATED FROM PYTHON SOURCE LINES 78-79 Timing .. GENERATED FROM PYTHON SOURCE LINES 79-88 .. code-block:: Python timing_results = timing_expression( the_expression=log_probability, the_database=database, number_of_draws=number_of_draws, ) results = [[k, f'{v:.3g}'] for k, v in timing_results.items()] print(f'With {number_of_draws} draws...') print(tabulate(results, headers=['', 'Time (in sec.)'], tablefmt='github')) .. GENERATED FROM PYTHON SOURCE LINES 89-90 Number of draws .. GENERATED FROM PYTHON SOURCE LINES 90-92 .. code-block:: Python number_of_draws = 1000 .. GENERATED FROM PYTHON SOURCE LINES 93-94 Timing .. GENERATED FROM PYTHON SOURCE LINES 94-102 .. code-block:: Python timing_results = timing_expression( the_expression=log_probability, the_database=database, number_of_draws=number_of_draws, ) results = [[k, f'{v:.3g}'] for k, v in timing_results.items()] print(f'With {number_of_draws} draws...') print(tabulate(results, headers=['', 'Time (in sec.)'], tablefmt='github')) .. _sphx_glr_download_auto_examples_timing_plot03_mixtures.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot03_mixtures.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot03_mixtures.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot03_mixtures.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_