biogeme.likelihood.bootstrap module¶
- biogeme.likelihood.bootstrap.bootstrap(number_of_bootstrap_samples, the_algorithm, modeling_elements, parameters, starting_values, second_derivatives_mode, numerically_safe, use_jit, number_of_jobs)[source]¶
Perform bootstrap estimation to assess the variability of model parameters.
This function generates a specified number of bootstrap samples from the original dataset, estimates the model on each sample using the provided algorithm and parameters, and returns the collection of estimation results.
- Parameters:
number_of_bootstrap_samples – Number of bootstrap replications to perform.
the_algorithm (
Callable
[[FunctionToMinimize
,ndarray
,list
[tuple
[float
,float
]],list
[str
],dict
[str
,Any
] |None
],OptimizationResults
]) – The optimization algorithm used to estimate the model.modeling_elements (
ModelElements
) – The components defining the model, including the database and log-likelihood expression.parameters (
dict
[str
,bool
|int
|float
|str
]) – Configuration parameters used during estimation.starting_values (
dict
[str
,float
]) – Dictionary of initial values for the model’s free parameters.second_derivatives_mode (
SecondDerivativesMode
) – specifies how second derivatives are calculated.numerically_safe (
bool
) – improves the numerical stability of the calculations.use_jit (
bool
) – if True, performs just-in-time compilation.number_of_jobs (
int
) – number of jobs for parallel execution of bootstrapping.
- Return type:
list
[AlgorithmResults
]- Returns:
A list of tuples containing: - estimated parameter values (NumPy array), - diagnostic information from the optimizer (dictionary), - convergence status (boolean).