.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/swissmetro/plot_b17lognormal_mixture_integral.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_swissmetro_plot_b17lognormal_mixture_integral.py: Mixture with lognormal distribution =================================== Example of a mixture of logit models. The mixing distribution is distributed as a log normal. Compared to :ref:`plot_b17lognormal_mixture`, the integration is performed using numerical integration instead of Monte-Carlo approximation. :author: Michel Bierlaire, EPFL :date: Mon Apr 10 12:13:23 2023 .. GENERATED FROM PYTHON SOURCE LINES 15-28 .. code-block:: Python import biogeme.biogeme_logging as blog import biogeme.biogeme as bio import biogeme.distributions as dist from biogeme import models from biogeme.expressions import ( Beta, RandomVariable, exp, log, Integrate, ) .. GENERATED FROM PYTHON SOURCE LINES 29-30 See the data processing script: :ref:`swissmetro_data`. .. GENERATED FROM PYTHON SOURCE LINES 30-47 .. code-block:: Python from swissmetro_data import ( database, CHOICE, SM_AV, CAR_AV_SP, TRAIN_AV_SP, TRAIN_TT_SCALED, TRAIN_COST_SCALED, SM_TT_SCALED, SM_COST_SCALED, CAR_TT_SCALED, CAR_CO_SCALED, ) logger = blog.get_screen_logger(level=blog.INFO) logger.info('Example b17lognormal_mixture_integral.py') .. rst-class:: sphx-glr-script-out .. code-block:: none Example b17lognormal_mixture_integral.py .. GENERATED FROM PYTHON SOURCE LINES 48-49 Parameters to be estimated. .. GENERATED FROM PYTHON SOURCE LINES 49-54 .. code-block:: Python ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_COST = Beta('B_COST', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 55-57 Define a random parameter, normally distributed, designed to be used. for Monte-Carlo simulation .. GENERATED FROM PYTHON SOURCE LINES 57-59 .. code-block:: Python B_TIME = Beta('B_TIME', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 60-61 It is advised not to use 0 as starting value for the following parameter.. .. GENERATED FROM PYTHON SOURCE LINES 61-63 .. code-block:: Python B_TIME_S = Beta('B_TIME_S', 1, -2, 2, 0) .. GENERATED FROM PYTHON SOURCE LINES 64-66 Define a random parameter, log normally distributed, designed to be used for numerical integration. .. GENERATED FROM PYTHON SOURCE LINES 66-70 .. code-block:: Python omega = RandomVariable('omega') B_TIME_RND = -exp(B_TIME + B_TIME_S * omega) density = dist.normalpdf(omega) .. GENERATED FROM PYTHON SOURCE LINES 71-72 Definition of the utility functions. .. GENERATED FROM PYTHON SOURCE LINES 72-76 .. code-block:: Python V1 = ASC_TRAIN + B_TIME_RND * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED V2 = ASC_SM + B_TIME_RND * SM_TT_SCALED + B_COST * SM_COST_SCALED V3 = ASC_CAR + B_TIME_RND * CAR_TT_SCALED + B_COST * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 77-78 Associate utility functions with the numbering of alternatives. .. GENERATED FROM PYTHON SOURCE LINES 78-80 .. code-block:: Python V = {1: V1, 2: V2, 3: V3} .. GENERATED FROM PYTHON SOURCE LINES 81-82 Associate the availability conditions with the alternatives. .. GENERATED FROM PYTHON SOURCE LINES 82-84 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 85-86 Conditional to omega, we have a logit model (called the kernel). .. GENERATED FROM PYTHON SOURCE LINES 86-88 .. code-block:: Python condprob = models.logit(V, av, CHOICE) .. GENERATED FROM PYTHON SOURCE LINES 89-90 We integrate over omega using numerical integration. .. GENERATED FROM PYTHON SOURCE LINES 90-92 .. code-block:: Python logprob = log(Integrate(condprob * density, 'omega')) .. GENERATED FROM PYTHON SOURCE LINES 93-94 Create the Biogeme object. .. GENERATED FROM PYTHON SOURCE LINES 94-97 .. code-block:: Python the_biogeme = bio.BIOGEME(database, logprob) the_biogeme.modelName = 'b17lognormal_mixture_integral' .. rst-class:: sphx-glr-script-out .. code-block:: none Biogeme parameters read from biogeme.toml. .. GENERATED FROM PYTHON SOURCE LINES 98-99 Estimate the parameters .. GENERATED FROM PYTHON SOURCE LINES 99-101 .. code-block:: Python results = the_biogeme.estimate() .. rst-class:: sphx-glr-script-out .. code-block:: none As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" *** Initial values of the parameters are obtained from the file __b17lognormal_mixture_integral.iter Cannot read file __b17lognormal_mixture_integral.iter. Statement is ignored. As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds] ** Optimization: BFGS with trust region for simple bounds Iter. ASC_CAR ASC_TRAIN B_COST B_TIME B_TIME_S Function Relgrad Radius Rho 0 0 0 0 0 1 5.7e+03 0.096 0.5 -0.00035 - 1 0.5 -0.5 -0.5 0.5 1.5 5.4e+03 0.042 0.5 0.39 + 2 0 -0.34 -1 0.69 1.5 5.3e+03 0.04 0.5 0.34 + 3 0 -0.34 -1 0.69 1.5 5.3e+03 0.04 0.25 -0.63 - 4 0.25 -0.39 -1.2 0.44 1.3 5.2e+03 0.017 0.25 0.49 + 5 0.084 -0.38 -1.5 0.61 1.3 5.2e+03 0.0097 0.25 0.25 + 6 0.084 -0.38 -1.5 0.61 1.3 5.2e+03 0.0097 0.12 -2.2 - 7 0.084 -0.38 -1.5 0.61 1.3 5.2e+03 0.0097 0.062 0.093 - 8 0.15 -0.32 -1.4 0.55 1.2 5.2e+03 0.0068 0.062 0.57 + 9 0.17 -0.38 -1.4 0.61 1.2 5.2e+03 0.0065 0.062 0.18 + 10 0.18 -0.34 -1.3 0.56 1.3 5.2e+03 0.0023 0.062 0.44 + 11 0.18 -0.35 -1.4 0.57 1.2 5.2e+03 0.0018 0.062 0.42 + 12 0.18 -0.35 -1.4 0.57 1.2 5.2e+03 0.0018 0.031 -4.6 - 13 0.18 -0.35 -1.4 0.57 1.2 5.2e+03 0.0018 0.016 -1.7 - 14 0.18 -0.35 -1.4 0.57 1.2 5.2e+03 0.0018 0.0078 0.051 - 15 0.17 -0.35 -1.4 0.57 1.2 5.2e+03 0.00057 0.0078 0.55 + 16 0.17 -0.35 -1.4 0.57 1.2 5.2e+03 0.00057 0.0039 0.042 - 17 0.17 -0.35 -1.4 0.57 1.2 5.2e+03 0.0004 0.0039 0.56 + 18 0.17 -0.35 -1.4 0.57 1.2 5.2e+03 0.00014 0.0039 0.74 + 19 0.17 -0.35 -1.4 0.57 1.2 5.2e+03 0.00014 0.002 -0.22 - 20 0.17 -0.35 -1.4 0.57 1.2 5.2e+03 0.00024 0.002 0.2 + 21 0.17 -0.35 -1.4 0.57 1.2 5.2e+03 4.9e-05 0.002 0.77 + Results saved in file b17lognormal_mixture_integral.html Results saved in file b17lognormal_mixture_integral.pickle .. GENERATED FROM PYTHON SOURCE LINES 102-104 .. code-block:: Python print(results.short_summary()) .. rst-class:: sphx-glr-script-out .. code-block:: none Results for model b17lognormal_mixture_integral Nbr of parameters: 5 Sample size: 6768 Excluded data: 3960 Final log likelihood: -5231.42 Akaike Information Criterion: 10472.84 Bayesian Information Criterion: 10506.94 .. GENERATED FROM PYTHON SOURCE LINES 105-107 .. code-block:: Python pandas_results = results.get_estimated_parameters() pandas_results .. raw:: html
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR 0.174040 0.040594 4.287292 1.808646e-05
ASC_TRAIN -0.346716 0.048707 -7.118431 1.091571e-12
B_COST -1.380908 0.057160 -24.158547 0.000000e+00
B_TIME 0.575354 0.048100 11.961535 0.000000e+00
B_TIME_S 1.241199 0.074153 16.738374 0.000000e+00


.. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 11.245 seconds) .. _sphx_glr_download_auto_examples_swissmetro_plot_b17lognormal_mixture_integral.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_b17lognormal_mixture_integral.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_b17lognormal_mixture_integral.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_b17lognormal_mixture_integral.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_