Note
Go to the end to download the full example code.
26. Triangular mixture with panel dataΒΆ
Bayesian estimation of a mixture of logit models. The mixing distribution is user-defined (triangular, here). The datafile is organized as panel data.
Michel Bierlaire, EPFL Tue Nov 18 2025, 18:31:04
from functools import partial
import biogeme.biogeme_logging as blog
import pymc as pm
from IPython.core.display_functions import display
from biogeme.bayesian_estimation import BayesianResults, get_pandas_estimated_parameters
from biogeme.biogeme import BIOGEME
from biogeme.expressions import (
Beta,
DistributedParameter,
Draws,
)
from biogeme.models import loglogit
See the data processing script: Panel data preparation for Swissmetro.
from swissmetro_panel import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b26triangular_panel_mixture.py')
Example b26triangular_panel_mixture.py
The scale parameters must stay away from zero. We define a small but positive lower bound
POSITIVE_LOWER_BOUND = 1.0e-5
Define a random parameter with a triangular distribution. The triangular distribution is not directly available from Biogeme. It has to be generated by a function provided by the user, based on PyMC available distributions.
See the PyMC documentation: https://www.pymc.io/projects/docs/en/stable/api/distributions.html
Mean of the distribution.
b_time = Beta('b_time', 0, None, None, 0)
Scale of the distribution. It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 1, POSITIVE_LOWER_BOUND, None, 0)
Distribution of the draws
TriangularFactory = partial(
pm.Triangular,
lower=-1.0,
c=0.0,
upper=1.0,
)
Associate the function with a name
DISTRIBUTIONS = {'TRIANGULAR': TriangularFactory}
Define a random parameter with a triangular distribution, designed to be used for Monte-Carlo simulation.
b_time_rnd = DistributedParameter(
'b_time_rnd',
b_time
+ b_time_s
* Draws('b_time_rnd_err_term', 'TRIANGULAR', dict_of_distributions=DISTRIBUTIONS),
)
Parameters to be estimated.
b_cost = Beta('b_cost', 0, None, None, 0)
The constants are distributed across individuals, to address serial correlation. In a panel setting, the corresponding draws are generated at the individual level. Wrapping them in DistributedParameter ensures they are expanded consistently when combined with observation-level variables.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_car_s = Beta('asc_car_s', 1, None, None, 0)
asc_car_rnd = DistributedParameter(
'asc_car_rnd',
asc_car
+ asc_car_s
* Draws('asc_car_eps', 'TRIANGULAR', dict_of_distributions=DISTRIBUTIONS),
)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_train_s = Beta('asc_train_s', 1, None, None, 0)
asc_train_rnd = DistributedParameter(
'asc_train_rnd',
asc_train
+ asc_train_s
* Draws('asc_train_eps', 'TRIANGULAR', dict_of_distributions=DISTRIBUTIONS),
)
asc_sm = Beta('asc_sm', 0, None, None, 1)
asc_sm_s = Beta('asc_sm_s', 1, None, None, 0)
asc_sm_rnd = DistributedParameter(
'asc_sm_rnd',
asc_sm
+ asc_sm_s * Draws('asc_sm_eps', 'TRIANGULAR', dict_of_distributions=DISTRIBUTIONS),
)
Definition of the utility functions.
v_train = asc_train_rnd + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm_rnd + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car_rnd + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional to the random parameters, the likelihood of one observation is given by the logit model (called the kernel).
conditional_log_probability = loglogit(v, av, CHOICE)
Create the Biogeme object.
the_biogeme = BIOGEME(
database,
conditional_log_probability,
)
the_biogeme.model_name = 'b26triangular_panel'
Biogeme parameters read from biogeme.toml.
Estimate the parameters.
try:
results = BayesianResults.from_netcdf(
filename=f'saved_results/{the_biogeme.model_name}.nc'
)
except FileNotFoundError:
results = the_biogeme.bayesian_estimation()
Loaded NetCDF file size: 792.7 MB
load finished in 5931 ms (5.93 s)
Get the results in a pandas table
pandas_results = get_pandas_estimated_parameters(
estimation_results=results,
)
display(pandas_results)
Diagnostics computation took 129.5 seconds (cached).
Name Value (mean) ... ESS (bulk) ESS (tail)
0 asc_train -0.414175 ... 2648.124949 4360.839781
1 asc_train_s 2.886533 ... 7.255061 30.937272
2 b_time -6.008143 ... 3308.074825 4800.624422
3 b_cost -3.298295 ... 3908.323051 4962.608849
4 asc_sm_s 1.776373 ... 7.299923 31.449565
5 asc_car 0.378078 ... 3099.587106 4795.332576
6 asc_car_s 4.658081 ... 7.184546 29.290536
7 b_time_s 8.766247 ... 1946.618142 3405.072801
[8 rows x 12 columns]
Total running time of the script: (2 minutes 15.616 seconds)