Note
Go to the end to download the full example code.
12. Mixture of logit with panel data¶
- Example of a mixture of logit models, using Monte-Carlo integration.
The datafile is organized as panel data.
Michel Bierlaire, EPFL Sat Jun 21 2025, 16:54:51
import biogeme.biogeme_logging as blog
from IPython.core.display_functions import display
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, Draws, MonteCarlo, PanelLikelihoodTrajectory, log
from biogeme.models import logit
from biogeme.results_processing import (
EstimationResults,
get_pandas_estimated_parameters,
)
See the data processing script: Panel data preparation for Swissmetro.
from swissmetro_panel import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
# from biogeme.results_processing import get_pandas_estimated_parameters
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b12_panel.py')
Example b12_panel.py
Parameters to be estimated.
b_cost = Beta('b_cost', 0, None, 0, 0)
Define a random parameter, normally distributed across individuals, designed to be used for Monte-Carlo simulation.
b_time = Beta('b_time', 0, None, 0, 0)
It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 1, 1.0e-5, None, 0)
b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'NORMAL_ANTI')
We do the same for the constants, to address serial correlation.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_car_s = Beta('asc_car_s', 1, 1.0e-5, None, 0)
asc_car_rnd = asc_car + asc_car_s * Draws('asc_car_rnd', 'NORMAL_ANTI')
asc_train = Beta('asc_train', 0, None, None, 0)
asc_train_s = Beta('asc_train_s', 1, 1.0e-5, None, 0)
asc_train_rnd = asc_train + asc_train_s * Draws('asc_train_rnd', 'NORMAL_ANTI')
asc_sm = Beta('asc_sm', 0, None, None, 0)
asc_sm_s = Beta('asc_sm_s', 1, 1.0e-5, None, 0)
asc_sm_rnd = asc_sm + asc_sm_s * Draws('asc_sm_rnd', 'NORMAL_ANTI')
Definition of the utility functions.
v_train = asc_train_rnd + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm_rnd + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car_rnd + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Conditional on the random parameters, the likelihood of one observation is given by the logit model (called the kernel).
choice_probability_one_observation = logit(v, av, CHOICE)
Conditional on the random parameters, the likelihood of all observations for one individual (the trajectory) is the product of the likelihood of each observation.
conditional_trajectory_probability = PanelLikelihoodTrajectory(
choice_probability_one_observation
)
We integrate over the random parameters using Monte-Carlo
log_probability = log(MonteCarlo(conditional_trajectory_probability))
As the objective is to illustrate the syntax, we calculate the Monte-Carlo approximation with a small number of draws.
the_biogeme = BIOGEME(
database,
log_probability,
number_of_draws=5_000,
seed=1223,
calculating_second_derivatives='never',
)
the_biogeme.model_name = 'b12_panel'
Biogeme parameters read from biogeme.toml.
Estimate the parameters.
try:
results = EstimationResults.from_yaml_file(
filename=f'saved_results/{the_biogeme.model_name}.yaml'
)
except FileNotFoundError:
results = the_biogeme.estimate()
print(results.short_summary())
Results for model b12_panel
Nbr of parameters: 9
Sample size: 752
Observations: 6768
Excluded data: 0
Final log likelihood: -3574.944
Akaike Information Criterion: 7167.887
Bayesian Information Criterion: 7209.492
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value ... BHHH p-value Active bound
0 asc_train -0.035216 ... 8.155440e-01 False
1 asc_train_s 2.763781 ... 0.000000e+00 False
2 b_time -6.045210 ... 0.000000e+00 False
3 b_time_s 3.547604 ... 0.000000e+00 False
4 b_cost -3.580028 ... 0.000000e+00 False
5 asc_sm 0.510528 ... 9.472799e-07 False
6 asc_sm_s 0.000010 ... 9.999822e-01 True
7 asc_car 0.904044 ... 2.848728e-10 False
8 asc_car_s 3.957354 ... 0.000000e+00 False
[9 rows x 6 columns]
Here is a list of the columns of the “flat” database fthat has been generated by Biogeme
for col in the_biogeme.model_elements.database.dataframe.columns:
print(col)
GROUP
SURVEY
SP
ID
PURPOSE
FIRST
TICKET
WHO
LUGGAGE
AGE
MALE
INCOME
GA
ORIGIN
DEST
TRAIN_AV
CAR_AV
SM_AV
TRAIN_TT
TRAIN_CO
TRAIN_HE
SM_TT
SM_CO
SM_HE
SM_SEATS
CAR_TT
CAR_CO
CHOICE
SM_COST
TRAIN_COST
CAR_AV_SP
TRAIN_AV_SP
TRAIN_TT_SCALED
TRAIN_COST_SCALED
SM_TT_SCALED
SM_COST_SCALED
CAR_TT_SCALED
CAR_CO_SCALED
And here is a list of the variables that have been renamed in the model specification.
for var in the_biogeme.model_elements.expressions_registry.variables:
print(var)
GROUP
SURVEY
SP
ID
PURPOSE
FIRST
TICKET
WHO
LUGGAGE
AGE
MALE
INCOME
GA
ORIGIN
DEST
TRAIN_AV
CAR_AV
SM_AV
TRAIN_TT
TRAIN_CO
TRAIN_HE
SM_TT
SM_CO
SM_HE
SM_SEATS
CAR_TT
CAR_CO
CHOICE
SM_COST
TRAIN_COST
CAR_AV_SP
TRAIN_AV_SP
TRAIN_TT_SCALED
TRAIN_COST_SCALED
SM_TT_SCALED
SM_COST_SCALED
CAR_TT_SCALED
CAR_CO_SCALED
Total running time of the script: (0 minutes 0.271 seconds)