17b. Mixture with lognormal distribution and numerical integrationΒΆ

Example of a mixture of logit models. The mixing distribution is distributed as a log normal. Compared to 17a. Mixture with lognormal distribution, the integration is performed using numerical integration instead of Monte-Carlo approximation.

Michel Bierlaire, EPFL Thu Jun 26 2025, 15:49:37

from IPython.core.display_functions import display

import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.expressions import (
    Beta,
    IntegrateNormal,
    RandomVariable,
    exp,
    log,
)
from biogeme.models import logit
from biogeme.results_processing import (
    EstimationResults,
    get_pandas_estimated_parameters,
)

See the data processing script: Data preparation for Swissmetro.

from swissmetro_data import (
    CAR_AV_SP,
    CAR_CO_SCALED,
    CAR_TT_SCALED,
    CHOICE,
    SM_AV,
    SM_COST_SCALED,
    SM_TT_SCALED,
    TRAIN_AV_SP,
    TRAIN_COST_SCALED,
    TRAIN_TT_SCALED,
    database,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b17b_lognormal_mixture_integral.py')
Example b17b_lognormal_mixture_integral.py

Parameters to be estimated.

asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)

Define a random parameter, normally distributed, designed to be used. for Monte-Carlo simulation

b_time = Beta('b_time', 0, None, None, 0)

It is advised not to use 0 as starting value for the following parameter..

b_time_s = Beta('b_time_s', 1, -2, 2, 0)

Define a random parameter, log normally distributed, designed to be used for numerical integration.

omega = RandomVariable('omega')
B_TIME_RND = -exp(b_time + b_time_s * omega)

Definition of the utility functions.

v_train = asc_train + B_TIME_RND * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + B_TIME_RND * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + B_TIME_RND * CAR_TT_SCALED + b_cost * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

v = {1: v_train, 2: v_swissmetro, 3: v_car}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Conditional to omega, we have a logit model (called the kernel).

conditional_probability = logit(v, av, CHOICE)

We integrate over omega using numerical integration.

log_probability = log(IntegrateNormal(conditional_probability, 'omega'))

Create the Biogeme object.

the_biogeme = BIOGEME(database, log_probability)
the_biogeme.model_name = 'b17b_lognormal_mixture_integral'
Biogeme parameters read from biogeme.toml.

Estimate the parameters.

try:
    results = EstimationResults.from_yaml_file(
        filename=f'saved_results/{the_biogeme.model_name}.yaml'
    )
except FileNotFoundError:
    results = the_biogeme.estimate()
*** Initial values of the parameters are obtained from the file __b17b_lognormal_mixture_integral.iter
Cannot read file __b17b_lognormal_mixture_integral.iter. Statement is ignored.
Starting values for the algorithm: {}
As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the algorithm from "automatic" to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Iter.       asc_train          b_time        b_time_s          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0               0               0               1               0               0      5.7e+03      0.096      0.5 -0.00031    -
    1            -0.5             0.5             1.5            -0.5             0.5      5.4e+03      0.042      0.5     0.39    +
    2           -0.34            0.69             1.5              -1               0      5.3e+03       0.04      0.5     0.34    +
    3           -0.34            0.69             1.5              -1               0      5.3e+03       0.04     0.25    -0.63    -
    4           -0.39            0.44             1.3            -1.2            0.25      5.2e+03      0.017     0.25     0.49    +
    5           -0.38            0.61             1.2            -1.5           0.081      5.2e+03     0.0098     0.25     0.25    +
    6           -0.38            0.61             1.2            -1.5           0.081      5.2e+03     0.0098     0.12     -2.2    -
    7           -0.26            0.56             1.2            -1.4            0.15      5.2e+03      0.012     0.12     0.13    +
    8           -0.26            0.56             1.2            -1.4            0.15      5.2e+03      0.012    0.062    0.075    -
    9           -0.32            0.62             1.2            -1.3            0.22      5.2e+03     0.0043    0.062     0.35    +
   10           -0.34            0.56             1.2            -1.4             0.2      5.2e+03     0.0045    0.062     0.36    +
   11           -0.34            0.56             1.2            -1.4             0.2      5.2e+03     0.0045    0.031    -0.23    -
   12           -0.33            0.59             1.2            -1.4            0.17      5.2e+03     0.0024    0.031     0.35    +
   13           -0.36            0.57             1.2            -1.4            0.17      5.2e+03     0.0019    0.031     0.39    +
   14           -0.36            0.57             1.2            -1.4            0.17      5.2e+03     0.0019    0.016    -0.98    -
   15           -0.36            0.57             1.2            -1.4            0.17      5.2e+03     0.0019   0.0078    -0.11    -
   16           -0.36            0.57             1.2            -1.4            0.17      5.2e+03    0.00021   0.0078     0.71    +
   17           -0.36            0.57             1.2            -1.4            0.17      5.2e+03    0.00021   0.0039   -0.022    -
   18           -0.35            0.57             1.2            -1.4            0.17      5.2e+03    0.00039   0.0039     0.26    +
   19           -0.35            0.57             1.2            -1.4            0.17      5.2e+03    0.00026   0.0039     0.43    +
   20           -0.35            0.57             1.2            -1.4            0.17      5.2e+03    0.00012   0.0039     0.49    +
   21           -0.35            0.57             1.2            -1.4            0.17      5.2e+03    0.00012    0.002    -0.53    -
   22           -0.35            0.57             1.2            -1.4            0.17      5.2e+03    0.00012  0.00098  0.00052    -
   23           -0.35            0.57             1.2            -1.4            0.17      5.2e+03    6.7e-05  0.00098     0.61    +
   24           -0.35            0.57             1.2            -1.4            0.17      5.2e+03      3e-05  0.00098     0.55    +
   25           -0.35            0.57             1.2            -1.4            0.17      5.2e+03      3e-05  0.00049    -0.13    -
   26           -0.35            0.57             1.2            -1.4            0.17      5.2e+03      3e-05  0.00049     0.28    +
   27           -0.35            0.57             1.2            -1.4            0.17      5.2e+03      3e-05  0.00024    0.065    -
   28           -0.35            0.57             1.2            -1.4            0.17      5.2e+03    6.5e-06  0.00024     0.78    +
   29           -0.35            0.57             1.2            -1.4            0.17      5.2e+03    6.5e-06  0.00012    -0.78    -
   30           -0.35            0.57             1.2            -1.4            0.17      5.2e+03    3.5e-06  0.00012     0.34    -
Optimization algorithm has converged.
Relative gradient: 3.531190814365559e-06
Cause of termination: Relative gradient = 3.5e-06 <= 6.1e-06
Number of function evaluations: 68
Number of gradient evaluations: 37
Number of hessian evaluations: 0
Algorithm: BFGS with trust region for simple bound constraints
Number of iterations: 31
Proportion of Hessian calculation: 0/18 = 0.0%
Optimization time: 0:00:00.557149
Calculate second derivatives and BHHH
File b17b_lognormal_mixture_integral.html has been generated.
File b17b_lognormal_mixture_integral.yaml has been generated.
print(results.short_summary())
Results for model b17b_lognormal_mixture_integral
Nbr of parameters:              5
Sample size:                    6768
Excluded data:                  3960
Final log likelihood:           -5231.506
Akaike Information Criterion:   10473.01
Bayesian Information Criterion: 10507.11
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
        Name     Value  Robust std err.  Robust t-stat.  Robust p-value
0  asc_train -0.350867         0.073180       -4.794581    1.630150e-06
1     b_time  0.569948         0.070411        8.094634    6.661338e-16
2   b_time_s  1.213820         0.141278        8.591690    0.000000e+00
3     b_cost -1.376255         0.096032      -14.331261    0.000000e+00
4    asc_car  0.167804         0.063408        2.646410    8.135116e-03

Total running time of the script: (0 minutes 1.818 seconds)

Gallery generated by Sphinx-Gallery