15a. Discrete mixture with panel dataΒΆ

Example of a discrete mixture of logit models, also called latent

class model. The datafile is organized as panel data.

Michel Bierlaire, EPFL Sat Jun 21 2025, 17:16:14

import biogeme.biogeme_logging as blog
from IPython.core.display_functions import display
from biogeme.biogeme import BIOGEME
from biogeme.expressions import (
    Beta,
    Draws,
    ExpressionOrNumeric,
    MonteCarlo,
    PanelLikelihoodTrajectory,
    log,
)
from biogeme.models import logit
from biogeme.results_processing import (
    EstimationResults,
    get_pandas_estimated_parameters,
)

See the data processing script: Panel data preparation for Swissmetro.

from swissmetro_panel import (
    CAR_AV_SP,
    CAR_CO_SCALED,
    CAR_TT_SCALED,
    CHOICE,
    SM_AV,
    SM_COST_SCALED,
    SM_TT_SCALED,
    TRAIN_AV_SP,
    TRAIN_COST_SCALED,
    TRAIN_TT_SCALED,
    database,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b15panel_discrete.py')
Example b15panel_discrete.py

Parameters to be estimated. One version for each latent class.

NUMBER_OF_CLASSES = 2
b_cost = [Beta(f'b_cost_class{i}', 0, None, None, 0) for i in range(NUMBER_OF_CLASSES)]

Define a random parameter, normally distributed across individuals, designed to be used for Monte-Carlo simulation

b_time = [Beta(f'b_time_class{i}', 0, None, None, 0) for i in range(NUMBER_OF_CLASSES)]

It is advised not to use 0 as starting value for the following parameter.

b_time_s = [
    Beta(f'b_time_s_class{i}', 1, None, None, 0) for i in range(NUMBER_OF_CLASSES)
]
b_time_rnd: list[ExpressionOrNumeric] = [
    b_time[i] + b_time_s[i] * Draws(f'b_time_rnd_class{i}', 'NORMAL_ANTI')
    for i in range(NUMBER_OF_CLASSES)
]

We do the same for the constants, to address serial correlation.

asc_car = [
    Beta(f'asc_car_class{i}', 0, None, None, 0) for i in range(NUMBER_OF_CLASSES)
]
asc_car_s = [
    Beta(f'asc_car_s_class{i}', 1, None, None, 0) for i in range(NUMBER_OF_CLASSES)
]
asc_car_rnd = [
    asc_car[i] + asc_car_s[i] * Draws(f'asc_car_rnd_class{i}', 'NORMAL_ANTI')
    for i in range(NUMBER_OF_CLASSES)
]

asc_train = [
    Beta(f'asc_train_class{i}', 0, None, None, 0) for i in range(NUMBER_OF_CLASSES)
]
asc_train_s = [
    Beta(f'asc_train_s_class{i}', 1, None, None, 0) for i in range(NUMBER_OF_CLASSES)
]
asc_train_rnd = [
    asc_train[i] + asc_train_s[i] * Draws(f'asc_train_rnd_class{i}', 'NORMAL_ANTI')
    for i in range(NUMBER_OF_CLASSES)
]

asc_sm = [Beta(f'asc_sm_class{i}', 0, None, None, 1) for i in range(NUMBER_OF_CLASSES)]
asc_sm_s = [
    Beta(f'asc_sm_s_class{i}', 1, None, None, 0) for i in range(NUMBER_OF_CLASSES)
]
asc_sm_rnd = [
    asc_sm[i] + asc_sm_s[i] * Draws(f'asc_sm_rnd_class{i}', 'NORMAL_ANTI')
    for i in range(NUMBER_OF_CLASSES)
]

Class membership probability.

score_class_0 = Beta('score_class_0', -1.7, None, None, 0)
probability_class_0 = logit({0: score_class_0, 1: 0}, None, 0)
probability_class_1 = logit({0: score_class_0, 1: 0}, None, 1)

In class 0, it is assumed that the time coefficient is zero.

b_time_rnd[0] = 0

Utility functions.

v_train_per_class = [
    asc_train_rnd[i] + b_time_rnd[i] * TRAIN_TT_SCALED + b_cost[i] * TRAIN_COST_SCALED
    for i in range(NUMBER_OF_CLASSES)
]
v_swissmetro_per_class = [
    asc_sm_rnd[i] + b_time_rnd[i] * SM_TT_SCALED + b_cost[i] * SM_COST_SCALED
    for i in range(NUMBER_OF_CLASSES)
]
v_car_per_class = [
    asc_car_rnd[i] + b_time_rnd[i] * CAR_TT_SCALED + b_cost[i] * CAR_CO_SCALED
    for i in range(NUMBER_OF_CLASSES)
]
v_per_class = [
    {1: v_train_per_class[i], 2: v_swissmetro_per_class[i], 3: v_car_per_class[i]}
    for i in range(NUMBER_OF_CLASSES)
]

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

The choice model is a discrete mixture of logit, with availability conditions We calculate the conditional probability for each class.

choice_probability_per_class = [
    PanelLikelihoodTrajectory(logit(v_per_class[i], av, CHOICE))
    for i in range(NUMBER_OF_CLASSES)
]

Conditional to the random variables, likelihood for the individual.

choice_probability = (
    probability_class_0 * choice_probability_per_class[0]
    + probability_class_1 * choice_probability_per_class[1]
)

We integrate over the random variables using Monte-Carlo.

log_probability = log(MonteCarlo(choice_probability))

The model is complex, and there are numerical issues when calculating the second derivatives. Therefore, we instruct Biogeme not to evaluate the second derivatives. As a consequence, the statistics reported after estimation are based on the BHHH matrix instead of the Rao-Cramer bound.

the_biogeme = BIOGEME(
    database,
    log_probability,
    number_of_draws=5_000,
    calculating_second_derivatives='never',
    seed=1223,
)
the_biogeme.model_name = 'b15a_panel_discrete'
Biogeme parameters read from biogeme.toml.

Estimate the parameters.

try:
    results = EstimationResults.from_yaml_file(
        filename=f'saved_results/{the_biogeme.model_name}.yaml'
    )
except FileNotFoundError:
    results = the_biogeme.estimate()
Flattening database [(6768, 38)].
Database flattened [(752, 362)]
*** Initial values of the parameters are obtained from the file __b15a_panel_discrete.iter
Cannot read file __b15a_panel_discrete.iter. Statement is ignored.
Starting values for the algorithm: {}
As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the algorithm from "automatic" to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Iter.   score_class_0 asc_train_class asc_train_s_cla   b_cost_class0 asc_sm_s_class0  asc_car_class0 asc_car_s_class asc_train_class asc_train_s_cla   b_time_class1 b_time_s_class1   b_cost_class1 asc_sm_s_class1  asc_car_class1 asc_car_s_class     Function    Relgrad   Radius      Rho
    0            -2.7              -1               2              -1               2               1               2              -1               2              -1               2              -1               2               1               2        4e+03      0.035        1     0.42    +
    1            -3.1              -1               2            -1.1             2.1            0.88               2              -2             1.7              -2               3              -2             1.8               0             1.8      3.8e+03      0.028        1     0.84    +
    2            -4.1           -0.03               3            -0.1             3.1           -0.12               3              -1             2.7              -3             2.8              -3            0.77              -1             2.8      3.7e+03      0.039        1     0.41    +
    3            -4.1           -0.03               3            -0.1             3.1           -0.12               3              -1             2.7              -3             2.8              -3            0.77              -1             2.8      3.7e+03      0.039      0.5    -0.15    -
    4            -4.3           -0.46             2.8           -0.55             3.2           -0.32             3.4            -1.5             2.2            -3.5             2.3            -3.5            0.27            -0.5             3.3      3.6e+03      0.026      0.5     0.53    +
    5            -3.8           -0.34             2.9            -0.4             3.3           -0.44             3.5              -1             2.7              -4             2.8              -4            0.77               0             2.8      3.6e+03      0.036      0.5      0.6    +
    6            -3.6           -0.36             2.8           -0.39             3.3           -0.47             3.5            -1.5             2.4            -4.5               3            -3.5            0.78            0.16             2.8      3.6e+03      0.014      0.5     0.63    +
    7            -3.1           -0.31             2.8           -0.41             3.3           -0.58             3.5              -1             2.9              -5             2.7              -4            0.94            0.24             3.1      3.6e+03      0.021      0.5      0.7    +
    8            -2.8           -0.32             2.7           -0.43             3.2           -0.67             3.6           -0.94             2.4            -5.5             2.7            -4.3             0.7            0.35             2.6      3.5e+03     0.0084      0.5     0.63    +
    9            -2.4           -0.31             2.7           -0.46             3.2           -0.72             3.6           -0.74             2.5            -5.6             2.9            -4.1            0.85            0.44             3.1      3.5e+03      0.011      0.5     0.72    +
   10            -2.3            -0.3             2.7           -0.57             3.2           -0.85             3.7           -0.74             2.2            -6.1             3.1            -4.3            0.82            0.55             3.1      3.5e+03     0.0036        5     0.96   ++
   11            -2.3            -0.3             2.7           -0.57             3.2           -0.85             3.7           -0.74             2.2            -6.1             3.1            -4.3            0.82            0.55             3.1      3.5e+03     0.0036      2.1      -29    -
   12            -2.3            -0.3             2.7           -0.57             3.2           -0.85             3.7           -0.74             2.2            -6.1             3.1            -4.3            0.82            0.55             3.1      3.5e+03     0.0036      1.1       -7    -
   13            -2.3            -0.3             2.7           -0.57             3.2           -0.85             3.7           -0.74             2.2            -6.1             3.1            -4.3            0.82            0.55             3.1      3.5e+03     0.0036     0.53     -1.5    -
   14            -2.3            -0.3             2.7           -0.57             3.2           -0.85             3.7           -0.74             2.2            -6.1             3.1            -4.3            0.82            0.55             3.1      3.5e+03     0.0036     0.27   -0.018    -
   15            -2.1           -0.26             2.7           -0.65             3.1           -0.94             3.7           -0.47             2.3            -6.2             3.1            -4.5            0.87            0.58             3.1      3.5e+03      0.008     0.27     0.56    +
   16            -2.1           -0.27             2.6           -0.77             3.1            -1.1             3.8            -0.5             2.1            -6.5             3.1            -4.6            0.93            0.68             3.1      3.5e+03     0.0024      2.7        1   ++
   17            -2.1           -0.27             2.6           -0.77             3.1            -1.1             3.8            -0.5             2.1            -6.5             3.1            -4.6            0.93            0.68             3.1      3.5e+03     0.0024      1.2      -16    -
   18            -2.1           -0.27             2.6           -0.77             3.1            -1.1             3.8            -0.5             2.1            -6.5             3.1            -4.6            0.93            0.68             3.1      3.5e+03     0.0024      0.6     -2.5    -
   19            -2.1           -0.27             2.6           -0.77             3.1            -1.1             3.8            -0.5             2.1            -6.5             3.1            -4.6            0.93            0.68             3.1      3.5e+03     0.0024      0.3    -0.21    -
   20            -1.8           -0.28             2.5           -0.95               3            -1.3             3.9           -0.33             2.1            -6.8             3.1            -4.6             1.1            0.64             3.1      3.5e+03     0.0024      0.3     0.26    +
   21            -1.8           -0.36             2.4            -1.1             2.8            -1.6               4           -0.31             1.9            -6.6             3.2            -4.8             1.2            0.95             3.1      3.5e+03     0.0096      0.3     0.33    +
   22            -1.8           -0.36             2.4            -1.1             2.8            -1.6               4           -0.31             1.9            -6.6             3.2            -4.8             1.2            0.95             3.1      3.5e+03     0.0096     0.15     -0.6    -
   23              -2           -0.51             2.3           -0.94             2.7            -1.7             4.2           -0.46             1.8            -6.8             3.1            -4.7             1.4            0.79             2.9      3.5e+03     0.0075     0.15     0.13    +
   24            -1.8           -0.49             2.3           -0.96             2.6            -1.8             4.2           -0.36             1.8            -6.7             3.2            -4.7             1.5            0.79               3      3.5e+03      0.003     0.15      0.8    +
   25            -1.8           -0.49             2.2              -1             2.5            -1.9             4.3           -0.34             1.9            -6.8             3.1            -4.8             1.4            0.94               3      3.5e+03      0.002     0.15     0.29    +
   26            -1.8           -0.54             2.2              -1             2.5            -2.1             4.3           -0.41             1.8            -6.9             3.2            -4.7             1.5            0.86               3      3.5e+03     0.0041     0.15     0.77    +
   27            -1.8           -0.56             2.2            -1.1             2.4            -2.2             4.4           -0.36             1.8            -6.9             3.3            -4.8             1.5            0.93               3      3.5e+03    0.00055      1.5        1   ++
   28            -1.8              -1               2            -1.1             1.8            -3.7             5.1           -0.23             1.8            -7.2             3.3            -5.1             1.9            0.97               3      3.5e+03     0.0031      1.5     0.21    +
   29            -1.8              -1               2            -1.1             1.8            -3.7             5.1           -0.23             1.8            -7.2             3.3            -5.1             1.9            0.97               3      3.5e+03     0.0031     0.76     -1.8    -
   30            -1.8              -1               2            -1.1             1.8            -3.7             5.1           -0.23             1.8            -7.2             3.3            -5.1             1.9            0.97               3      3.5e+03     0.0031     0.38    -0.49    -
   31            -1.6           -0.94             2.2            -1.1             1.7              -4             5.2           -0.34             1.8            -7.1             3.4            -4.7             1.5             1.1             2.8      3.5e+03     0.0021     0.38     0.21    +
   32            -1.6           -0.94             2.2            -1.1             1.7              -4             5.2           -0.34             1.8            -7.1             3.4            -4.7             1.5             1.1             2.8      3.5e+03     0.0021     0.19   -0.014    -
   33            -1.7           -0.93             2.3            -1.2             1.7              -4             5.2           -0.28             1.8            -7.1             3.3            -4.7             1.7             1.1               3      3.5e+03     0.0017     0.19     0.75    +
   34            -1.7           -0.93             2.3            -1.2             1.7              -4             5.2           -0.28             1.8            -7.1             3.3            -4.7             1.7             1.1               3      3.5e+03     0.0017    0.094    -0.32    -
   35            -1.8           -0.95             2.4            -1.2             1.7              -4             5.2           -0.37             1.8              -7             3.4            -4.8             1.7               1             2.9      3.5e+03     0.0011    0.094     0.14    +
   36            -1.7           -0.97             2.4            -1.2             1.7            -4.1             5.2           -0.36             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0014     0.94        1   ++
   37            -1.7           -0.97             2.4            -1.2             1.7            -4.1             5.2           -0.36             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0014     0.47     -6.7    -
   38            -1.7           -0.97             2.4            -1.2             1.7            -4.1             5.2           -0.36             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0014     0.24     -4.7    -
   39            -1.7           -0.97             2.4            -1.2             1.7            -4.1             5.2           -0.36             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0014     0.12     -2.6    -
   40            -1.7           -0.97             2.4            -1.2             1.7            -4.1             5.2           -0.36             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0014    0.059     -1.2    -
   41            -1.7           -0.97             2.5            -1.2             1.6            -4.1             5.2           -0.31             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00089    0.059     0.46    +
   42            -1.8           -0.99             2.5            -1.2             1.6            -4.1             5.2            -0.3             1.8              -7             3.3            -4.8             1.7             1.1             2.9      3.5e+03     0.0019    0.059     0.44    +
   43            -1.7              -1             2.6            -1.2             1.5            -4.1             5.2           -0.34             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00036     0.59     0.94   ++
   44            -1.7              -1             2.6            -1.2             1.5            -4.1             5.2           -0.34             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00036      0.3     -3.2    -
   45            -1.7              -1             2.6            -1.2             1.5            -4.1             5.2           -0.34             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00036     0.15     -1.4    -
   46            -1.7              -1             2.6            -1.2             1.5            -4.1             5.2           -0.34             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00036    0.074     -0.9    -
   47            -1.8              -1             2.7            -1.2             1.5            -4.2             5.3           -0.29             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0014    0.074     0.19    +
   48            -1.7              -1             2.7            -1.2             1.4            -4.2             5.3           -0.32             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0011    0.074     0.62    +
   49            -1.7              -1             2.8            -1.2             1.4            -4.2             5.3           -0.32             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00094    0.074     0.24    +
   50            -1.8              -1             2.8            -1.2             1.3            -4.3             5.4            -0.3             1.7              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00032    0.074     0.68    +
   51            -1.8              -1             2.8            -1.2             1.3            -4.3             5.4            -0.3             1.7              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00032    0.037    -0.61    -
   52            -1.7              -1             2.8            -1.2             1.3            -4.3             5.4           -0.31             1.7              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0003    0.037     0.49    +
   53            -1.7              -1             2.8            -1.2             1.3            -4.4             5.4           -0.32             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00015    0.037     0.55    +
   54            -1.7              -1             2.8            -1.2             1.3            -4.4             5.4            -0.3             1.7              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00031    0.037     0.15    +
   55            -1.7              -1             2.8            -1.2             1.3            -4.4             5.5           -0.32             1.7              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00012     0.37     0.91   ++
   56            -1.8              -1             2.9            -1.2             1.2            -4.7             5.7            -0.3             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0004     0.37     0.65    +
   57            -1.8              -1             2.9            -1.2             1.2            -4.7             5.7            -0.3             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0004     0.13    -0.25    -
   58            -1.8              -1             2.9            -1.2             1.2            -4.7             5.7            -0.3             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03     0.0004    0.066    -0.19    -
   59            -1.7              -1             2.9            -1.2             1.1            -4.7             5.7           -0.32             1.7              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00018    0.066     0.54    +
   60            -1.7              -1             2.9            -1.2             1.2            -4.7             5.7           -0.32             1.7              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00021    0.066     0.44    +
   61            -1.8           -0.99             2.9            -1.2             1.1            -4.7             5.8           -0.33             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00018    0.066     0.18    +
   62            -1.8           -0.99             2.9            -1.2               1            -4.7             5.9           -0.31             1.7              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00024    0.066      0.5    +
   63            -1.8           -0.98               3            -1.2            0.99            -4.8             5.9           -0.33             1.7            -6.9             3.3            -4.7             1.7               1             2.9      3.5e+03    0.00034    0.066     0.57    +
   64            -1.8              -1             2.9            -1.2            0.92            -4.8             5.9           -0.34             1.8            -6.9             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00015    0.066     0.12    +
   65            -1.8           -0.98               3            -1.2            0.86            -4.8               6           -0.31             1.7              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00018    0.066     0.72    +
   66            -1.8           -0.98               3            -1.2            0.79            -4.8               6           -0.33             1.8            -6.9             3.3            -4.7             1.7               1             2.9      3.5e+03    5.2e-05     0.66     0.92   ++
   67            -1.8           -0.97             3.1            -1.2             0.6            -4.9             6.1           -0.33             1.8            -6.9             3.3            -4.7             1.7               1             2.9      3.5e+03    7.4e-05      6.6      1.6   ++
   68            -1.8           -0.97             3.1            -1.2             0.6            -4.9             6.1           -0.33             1.8            -6.9             3.3            -4.7             1.7               1             2.9      3.5e+03    7.4e-05     0.42       -4    -
   69            -1.8           -0.95             3.1            -1.1            0.18              -5             6.2           -0.35             1.8            -6.9             3.3            -4.7             1.7               1             2.9      3.5e+03    9.5e-05      4.2     0.91   ++
   70            -1.8              -1             3.1            -1.2           0.074              -5             6.2           -0.33             1.7            -6.9             3.3            -4.7             1.7               1             2.9      3.5e+03    0.00011       42      1.3   ++
   71            -1.8              -1             3.1            -1.2           0.046            -4.9             6.1           -0.33             1.8            -6.9             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00017       42     0.27    +
   72            -1.8              -1             3.1            -1.2           0.046            -4.9             6.1           -0.33             1.8            -6.9             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00017    0.083     -1.4    -
   73            -1.8              -1             3.1            -1.2           0.046            -4.9             6.1           -0.33             1.8            -6.9             3.3            -4.8             1.7               1             2.9      3.5e+03    0.00017    0.042    0.011    -
   74            -1.8            -1.1             3.1            -1.2           0.033            -4.9             6.1           -0.32             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    4.7e-05    0.042     0.82    +
   75            -1.8              -1             3.1            -1.2           0.042            -4.9             6.1           -0.32             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    1.7e-05    0.042     0.72    +
   76            -1.8              -1             3.1            -1.2           0.042            -4.9             6.1           -0.32             1.8              -7             3.3            -4.8             1.7               1             2.9      3.5e+03    5.1e-06    0.042     0.46    +
Optimization algorithm has converged.
Relative gradient: 5.130375656584178e-06
Cause of termination: Relative gradient = 5.1e-06 <= 6.1e-06
Number of function evaluations: 180
Number of gradient evaluations: 103
Number of hessian evaluations: 0
Algorithm: BFGS with trust region for simple bound constraints
Number of iterations: 77
Proportion of Hessian calculation: 0/51 = 0.0%
Optimization time: 0:02:24.118658
Calculate BHHH
File b15a_panel_discrete.html has been generated.
File b15a_panel_discrete.yaml has been generated.
print(results.short_summary())
Results for model b15a_panel_discrete
Nbr of parameters:              15
Sample size:                    752
Observations:                   6768
Excluded data:                  0
Final log likelihood:           -3524.886
Akaike Information Criterion:   7079.772
Bayesian Information Criterion: 7149.113
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
                  Name     Value  BHHH std err.  BHHH t-stat.  BHHH p-value
0        score_class_0 -1.759444       0.226120     -7.781031  7.105427e-15
1     asc_train_class0 -1.049639       0.682672     -1.537545  1.241599e-01
2   asc_train_s_class0  3.111880       0.640508      4.858454  1.183061e-06
3        b_cost_class0 -1.172640       0.535508     -2.189773  2.854071e-02
4      asc_sm_s_class0  0.029721       6.383987      0.004656  9.962854e-01
5       asc_car_class0 -4.864336       1.630491     -2.983356  2.851058e-03
6     asc_car_s_class0  6.075086       1.857124      3.271233  1.070798e-03
7     asc_train_class1 -0.320075       0.284611     -1.124607  2.607558e-01
8   asc_train_s_class1  1.756651       0.457972      3.835721  1.251964e-04
9        b_time_class1 -6.956658       0.367302    -18.939904  0.000000e+00
10     b_time_s_class1  3.281167       0.353407      9.284384  0.000000e+00
11       b_cost_class1 -4.756216       0.253114    -18.790787  0.000000e+00
12     asc_sm_s_class1  1.699272       0.333530      5.094815  3.490818e-07
13      asc_car_class1  1.020660       0.215778      4.730134  2.243718e-06
14    asc_car_s_class1  2.874639       0.260598     11.030949  0.000000e+00

Total running time of the script: (2 minutes 37.191 seconds)

Gallery generated by Sphinx-Gallery