Assisted specification¶

Example of the estimation of several versions of the model using assisted specification algorithm. The catalog of specifications is defined in Specification of a catalog of models . Compared to plot_b21multiple_models, the number fo specifications exceeds the maximum limit, so a heuristic is applied. See Bierlaire and Ortelli, 2023 for a detailed description of the use of the assisted specification algorithm.

Michel Bierlaire, EPFL Sat Jun 28 2025, 12:25:12

import biogeme.biogeme_logging as blog
from biogeme.assisted import AssistedSpecification
from biogeme.catalog import count_number_of_specifications
from biogeme.multiobjectives import aic_bic_dimension
from biogeme.results_processing import compile_estimation_results

from plot_b22b_multiple_models_spec import PARETO_FILE_NAME, the_biogeme

logger = blog.get_screen_logger(blog.INFO)
logger.info('Example b22multiple_models')
Example b22multiple_models
nbr = count_number_of_specifications(the_biogeme.log_like)
if nbr is None:
    print('There are too many possible specifications to be enumerated')
else:
    print(f'There are {nbr} possible specifications')
There are 504 possible specifications

Creation of the object capturing the assisted specification algorithm. Its constructor takes three arguments:

  • the biogeme object containing the specifications and the database,

  • an object defining the objectives to minimize. Here, we use three objectives: AIC, BIC and number of parameters.

  • the name of the file where the estimated are saved, and organized into a Pareto set.

assisted_specification = AssistedSpecification(
    biogeme_object=the_biogeme,
    multi_objectives=aic_bic_dimension,
    pareto_file_name=PARETO_FILE_NAME,
)
Unable to read file b22_multiple_models.pareto. Pareto set empty.

The algorithm is run.

non_dominated_models = assisted_specification.run()
Biogeme parameters read from biogeme.toml.
Model with 4 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000036
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.92           -0.67           -0.88           -0.49      5.4e+03      0.041       10      1.1   ++
    1           -0.73            -1.2              -1           -0.18      5.3e+03     0.0072    1e+02      1.1   ++
    2            -0.7            -1.3            -1.1           -0.16      5.3e+03    0.00018    1e+03        1   ++
    3            -0.7            -1.3            -1.1           -0.16      5.3e+03    1.1e-07    1e+03        1   ++
default_specification=asc:no_seg;train_cost_catalog:linear;train_headway_catalog:without_headway;train_tt_catalog:linear
The number of possible specifications [504] exceeds the maximum number [100]. A heuristic algorithm is applied.
*** VNS ***
asc:no_seg;train_cost_catalog:linear;train_headway_catalog:without_headway;train_tt_catalog:linear [10670.504013832326, np.float64(10697.78385743747), 4]
Initial pareto: 1
Attempt 0/100
Biogeme parameters read from biogeme.toml.
Model with 4 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000037
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0              -1              -1           -0.38           -0.11      5.6e+03      0.041       10      1.1   ++
    1           -0.65            -2.8           -0.89          -0.037      5.3e+03      0.016    1e+02      1.1   ++
    2           -0.49            -3.3            -1.1         -0.0039      5.3e+03     0.0015    1e+03      1.1   ++
    3           -0.48            -3.4            -1.1         -0.0026      5.3e+03    9.8e-06    1e+04        1   ++
    4           -0.48            -3.4            -1.1         -0.0026      5.3e+03    4.4e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
*** New pareto solution:
asc:no_seg;train_cost_catalog:linear;train_headway_catalog:without_headway;train_tt_catalog:sqrt [10592.228471637549, np.float64(10619.508315242692), 4]
Attempt 1/100
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000038
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.68           -0.99             1.8              -1         -0.0017           -0.46      5.7e+03        1.6        1     0.71    +
    1            -0.7            -1.7            0.83            -1.3         0.00048           -0.15      5.4e+03       0.19       10     0.92   ++
    2           -0.15            -1.7            0.59            -1.1         -0.0062           -0.13      5.3e+03      0.076    1e+02     0.98   ++
    3           -0.23            -1.7            0.51            -1.1         -0.0054           -0.11      5.3e+03     0.0013    1e+03        1   ++
    4           -0.23            -1.7            0.51            -1.1         -0.0054           -0.11      5.3e+03    6.9e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
*** New pareto solution:
asc:no_seg;train_cost_catalog:linear;train_headway_catalog:with_headway;train_tt_catalog:boxcox [10564.70646462865, np.float64(10605.626230036367), 6]
Attempt 2/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000039
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.5e+03      0.037       10      1.1   ++
    1      5.4e+03     0.0086    1e+02      1.1   ++
    2      5.4e+03    0.00081    1e+03      1.1   ++
    3      5.4e+03    7.7e-06    1e+04        1   ++
    4      5.4e+03    7.3e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000040
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.76            0.19              -1           -0.37           -0.27           -0.12      5.4e+03      0.044       10        1   ++
    1           -0.97             2.4            -1.6           -0.96          -0.072           -0.11        5e+03      0.027    1e+02     0.94   ++
    2              -1             2.1            -1.7            -1.1          -0.067           -0.29        5e+03    0.00066    1e+03        1   ++
    3              -1             2.1            -1.7            -1.1          -0.067           -0.29        5e+03    2.1e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
*** New pareto solution:
asc:GA;train_cost_catalog:linear;train_headway_catalog:without_headway;train_tt_catalog:log [10054.467818928895, np.float64(10095.387584336611), 6]
Attempt 3/100
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000041
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.53              -1           -0.36         -0.0041           -0.52      5.5e+03        2.4       10        1   ++
    1           -0.32            -1.6           -0.94         -0.0046          -0.081      5.3e+03      0.041    1e+02        1   ++
    2           -0.25            -1.7              -1         -0.0054           -0.11      5.3e+03      0.012    1e+03        1   ++
    3           -0.25            -1.7              -1         -0.0054           -0.11      5.3e+03    0.00025    1e+04        1   ++
    4           -0.25            -1.7              -1         -0.0054           -0.11      5.3e+03    1.2e-05    1e+05        1   ++
    5           -0.25            -1.7              -1         -0.0054           -0.11      5.3e+03    2.7e-07    1e+05        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000042
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.74            0.21              -1           -0.26           -0.29           -0.13      5.5e+03      0.044       10        1   ++
    1            -1.1             2.4            -1.5            -1.3           -0.13            -1.2        5e+03      0.028    1e+02     0.96   ++
    2            -1.2             2.2            -1.6            -1.5           -0.16            -1.8        5e+03    0.00079    1e+03        1   ++
    3            -1.2             2.2            -1.6            -1.5           -0.16            -1.8        5e+03    4.9e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
*** New pareto solution:
asc:GA;train_cost_catalog:log;train_headway_catalog:without_headway;train_tt_catalog:log [9913.311849260816, np.float64(9954.231614668532), 6]
Attempt 4/100
Biogeme parameters read from biogeme.toml.
Model with 4 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000043
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.74              -1           -0.39            -0.3      5.5e+03      0.044       10        1   ++
    1           -0.54            -1.6           -0.93         -0.0041      5.3e+03     0.0052    1e+02      1.1   ++
    2           -0.51            -1.7              -1          0.0019      5.3e+03    0.00015    1e+03        1   ++
    3           -0.51            -1.7              -1          0.0019      5.3e+03    1.4e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000044
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.53           -0.72            0.42           0.081           -0.62            -0.9         -0.0027           -0.74         -0.0034            0.23          -0.048      5.3e+03        2.6       10      1.1   ++
    1           -0.32              -1            0.76            0.39            -1.1            -1.1         -0.0051           -0.65            0.29            0.12           -0.09      5.1e+03       0.46    1e+02      1.1   ++
    2           -0.39            -1.1            0.94            0.55            -1.2            -1.1         -0.0059           -0.68            0.33            0.12          -0.085      5.1e+03      0.037    1e+03        1   ++
    3           -0.41            -1.1            0.96            0.58            -1.2            -1.1          -0.006           -0.68            0.33            0.12          -0.067      5.1e+03    0.00034    1e+04        1   ++
    4           -0.41            -1.1            0.96            0.58            -1.2            -1.1          -0.006           -0.68            0.33            0.12          -0.067      5.1e+03    1.3e-06    1e+04        1   ++
Considering neighbor 1/20 for current solution
Considering neighbor 2/20 for current solution
Attempt 5/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000045
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.42           -0.75            0.79            -0.7              -1        -0.00052           -0.39          -0.095           -0.36      5.2e+03        2.8       10      1.1   ++
    1           -0.49           -0.92             1.9           -0.96            -1.4         -0.0048            -0.8            0.37            -1.4      4.9e+03       0.74    1e+02      1.1   ++
    2           -0.43            -1.1               2              -1            -1.4         -0.0066           -0.91            0.46            -1.9      4.9e+03      0.069    1e+03      1.1   ++
    3           -0.42            -1.1               2              -1            -1.5         -0.0068           -0.91            0.47            -1.9      4.9e+03    0.00065    1e+04        1   ++
    4           -0.42            -1.1               2              -1            -1.5         -0.0068           -0.91            0.47            -1.9      4.9e+03    1.1e-05    1e+05        1   ++
    5           -0.42            -1.1               2              -1            -1.5         -0.0068           -0.91            0.47            -1.9      4.9e+03    8.8e-09    1e+05        1   ++
Considering neighbor 0/20 for current solution
*** New pareto solution:
asc:MALE-GA;train_cost_catalog:log;train_headway_catalog:with_headway;train_tt_catalog:linear [9765.322555569284, np.float64(9826.70220368086), 9]
Attempt 6/100
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000046
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0            -0.7            -0.7            0.42             0.1           -0.59           -0.94           -0.68          0.0075            0.12           -0.41      5.3e+03      0.038       10      1.1   ++
    1           -0.72              -1            0.76            0.37           -0.97            -1.1            -0.6            0.31          -0.023            -0.5      5.2e+03     0.0081    1e+02      1.1   ++
    2           -0.84            -1.1            0.94            0.53              -1            -1.1            -0.6            0.33          -0.023           -0.51      5.2e+03    0.00052    1e+03        1   ++
    3           -0.84            -1.1            0.94            0.53              -1            -1.1            -0.6            0.33          -0.023           -0.51      5.2e+03    4.4e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000047
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.52           -0.79            0.53           -0.88             1.7              -1           0.003           -0.29          -0.051           -0.22      5.3e+03        2.3        1     0.88    +
    1           -0.29              -1             1.5            -1.1               1              -1         -0.0043           -0.51           0.087           -0.35      4.9e+03        0.6       10      1.1   ++
    2            0.43            -1.1             1.9            -2.2          -0.078            -1.1         -0.0066           -0.37            0.46           -0.44      4.9e+03       0.14       10     0.21    +
    3            0.15            -1.2               2            -1.8            0.17            -1.1         -0.0066           -0.51             0.4           -0.44      4.9e+03     0.0078    1e+02      1.1   ++
    4            0.11            -1.2               2            -1.7            0.33            -1.1         -0.0067           -0.54            0.41           -0.43      4.9e+03     0.0043    1e+03        1   ++
    5           0.098            -1.2               2            -1.7            0.34            -1.1         -0.0067           -0.55            0.41           -0.43      4.9e+03    4.7e-05    1e+04        1   ++
    6           0.098            -1.2               2            -1.7            0.34            -1.1         -0.0067           -0.55            0.41           -0.43      4.9e+03    2.1e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
*** New pareto solution:
asc:MALE-GA;train_cost_catalog:linear;train_headway_catalog:with_headway;train_tt_catalog:boxcox [9742.605177445377, np.float64(9810.804786458239), 10]
Attempt 7/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000048
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.66          -0.088          -0.015              -1            -0.3               1           -0.35           -0.27          -0.022      5.6e+03      0.057       10        1   ++
    1           -0.66          -0.088          -0.015              -1            -0.3               1           -0.35           -0.27          -0.022      5.6e+03      0.057      4.5 -2.9e+05    -
    2           -0.66          -0.088          -0.015              -1            -0.3               1           -0.35           -0.27          -0.022      5.6e+03      0.057      2.2 -1.3e+02    -
    3           -0.66          -0.088          -0.015              -1            -0.3               1           -0.35           -0.27          -0.022      5.6e+03      0.057      1.1     -4.7    -
    4            -1.1            0.83            0.97            -1.6           -0.86             2.1          0.0079           -0.16           -0.75      5.6e+03      0.089      1.1     0.13    +
    5            -1.1            0.83            0.97            -1.6           -0.86             2.1          0.0079           -0.16           -0.75      5.6e+03      0.089     0.56     -1.2    -
    6            -1.1             1.1            0.92            -1.6            -0.3             2.1            0.12          -0.074           -0.72      5.4e+03      0.012     0.56     0.89    +
    7            -1.3             1.1            0.91            -1.7           -0.56             1.5          0.0027           -0.18            -0.7      5.4e+03      0.031      5.6     0.96   ++
    8            -1.3             1.1            0.91            -1.7           -0.56             1.5          0.0027           -0.18            -0.7      5.4e+03      0.031      1.1     -1.5    -
    9            -1.3             1.1            0.92            -1.6            -0.9            0.41            0.02           0.017           -0.68      5.3e+03     0.0093       11     0.95   ++
   10            -1.4             1.2               1            -1.5            -1.1            0.41          -0.084          -0.068           -0.65      5.3e+03    0.00049  1.1e+02        1   ++
   11            -1.4             1.2               1            -1.5            -1.1            0.41          -0.084          -0.068           -0.65      5.3e+03    5.2e-06  1.1e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000049
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0              -1            0.25          0.0045           -0.71           -0.89           -0.39          -0.075          -0.066      5.4e+03      0.044       10      1.1   ++
    1            -1.3            0.89            0.74            -1.2            -1.1           -0.26             0.1           -0.22      5.2e+03     0.0092    1e+02      1.1   ++
    2            -1.5             1.1            0.95            -1.2            -1.1           -0.24             0.1           -0.25      5.2e+03    0.00096    1e+03      1.1   ++
    3            -1.5             1.1            0.98            -1.2            -1.1           -0.24             0.1           -0.25      5.2e+03    1.1e-05    1e+04        1   ++
    4            -1.5             1.1            0.98            -1.2            -1.1           -0.24             0.1           -0.25      5.2e+03    1.7e-09    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000050
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0              -1            0.15              -1           -0.35          -0.045              -1      5.5e+03      0.043       10      1.1   ++
    1            -1.2             2.3            -2.4            -1.2           -0.18            -1.4        5e+03      0.026    1e+02        1   ++
    2            -1.2             2.1            -2.9            -1.4           -0.19            -1.9      4.9e+03     0.0017    1e+03        1   ++
    3            -1.2             2.1            -2.9            -1.5           -0.19            -1.9      4.9e+03    1.5e-05    1e+04        1   ++
    4            -1.2             2.1            -2.9            -1.5           -0.19            -1.9      4.9e+03    1.4e-09    1e+04        1   ++
Considering neighbor 2/20 for current solution
*** New pareto solution:
asc:GA;train_cost_catalog:log;train_headway_catalog:without_headway;train_tt_catalog:sqrt [9905.779868217465, np.float64(9946.699633625181), 6]
Attempt 8/100
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000051
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.52           0.052         -0.0022              -1               0               0               0         -0.0028               0               0           -0.25           -0.14          -0.034               0               0      5.6e+03        2.5       10        1   ++
    1            -0.7            0.81            0.63            -1.5               0               0               0         -0.0047               0               0            0.15          -0.089           -0.71               0               0      5.5e+03       0.44    1e+02      1.1   ++
    2           -0.94             1.1             0.9            -1.6               0               0               0         -0.0053               0               0            0.13          -0.081           -0.76               0               0      5.5e+03       0.05    1e+03      1.1   ++
    3           -0.98             1.1            0.94            -1.6               0               0               0         -0.0053               0               0            0.13          -0.082           -0.76               0               0      5.5e+03    0.00074    1e+04        1   ++
    4           -0.98             1.1            0.94            -1.6               0               0               0         -0.0053               0               0            0.13          -0.082           -0.76               0               0      5.5e+03      2e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000052
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.86            0.79           -0.82              -1               1           -0.48           -0.37      5.3e+03       0.04       10      1.1   ++
    1            -1.4               2              -1            -1.9           -0.36           -0.45            -1.5      5.1e+03      0.054       10     0.67    +
    2            -1.5             2.1           -0.98            -1.3            -0.3           -0.34            -1.8        5e+03     0.0023    1e+02        1   ++
    3            -1.5             2.1              -1            -1.6            0.14           -0.38            -1.8        5e+03     0.0071    1e+02     0.82    +
    4            -1.5             2.1            -1.1            -1.5            0.12           -0.35            -1.8        5e+03    0.00014    1e+03     0.99   ++
    5            -1.5             2.1            -1.1            -1.5            0.12           -0.35            -1.8        5e+03    1.3e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
Considering neighbor 2/20 for current solution
Attempt 9/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000053
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.36           -0.57              -1           -0.74               1           -0.35           -0.15      5.4e+03      0.037       10        1   ++
    1            0.28            -1.3            -1.5            -1.3          -0.089           -0.39            0.24      5.3e+03      0.016       10      0.8    +
    2            0.27            -1.3            -1.6            -1.2            0.22           -0.41            0.29      5.2e+03     0.0039    1e+02      1.2   ++
    3             0.3            -1.3            -1.6            -1.1             0.4           -0.39            0.28      5.2e+03    0.00075    1e+03      1.1   ++
    4             0.3            -1.3            -1.6            -1.1            0.43           -0.38            0.28      5.2e+03    1.7e-05    1e+04        1   ++
    5             0.3            -1.3            -1.6            -1.1            0.43           -0.38            0.28      5.2e+03    2.4e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000054
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.42           -0.58            0.49              -1           -0.61           -0.36           -0.18           -0.22      5.3e+03      0.052       10        1   ++
    1            -0.4           -0.96             2.1            -1.5            -1.4           -0.47            0.37            -1.4      4.8e+03      0.021    1e+02        1   ++
    2           -0.37            -1.2             2.1            -1.6            -1.5           -0.55            0.45            -1.9      4.8e+03     0.0012    1e+03        1   ++
    3           -0.37            -1.2             2.1            -1.6            -1.5           -0.55            0.46              -2      4.8e+03    9.3e-06    1e+04        1   ++
    4           -0.37            -1.2             2.1            -1.6            -1.5           -0.55            0.46              -2      4.8e+03      3e-09    1e+04        1   ++
Considering neighbor 1/20 for current solution
*** New pareto solution:
asc:MALE-GA;train_cost_catalog:log;train_headway_catalog:without_headway;train_tt_catalog:log [9676.555372350647, np.float64(9731.115059560936), 8]
Attempt 10/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000055
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.37           -0.65              -1            -0.7               1          0.0011           -0.31          -0.075      5.4e+03        2.5       10        1   ++
    1            0.52            -1.3            -1.5            -1.3           -0.13         -0.0045           -0.44            0.19      5.2e+03       0.61       10     0.78    +
    2            0.55            -1.3            -1.6            -1.2             0.2         -0.0057           -0.53            0.29      5.2e+03      0.044    1e+02      1.2   ++
    3            0.57            -1.3            -1.6            -1.1            0.39         -0.0058            -0.5            0.28      5.2e+03     0.0026    1e+03      1.1   ++
    4            0.58            -1.3            -1.6            -1.1            0.43         -0.0058            -0.5            0.28      5.2e+03    0.00011    1e+04        1   ++
    5            0.58            -1.3            -1.6            -1.1            0.43         -0.0058            -0.5            0.28      5.2e+03    1.7e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000056
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.57           -0.76              -1           -0.96               1           -0.54           -0.25      5.4e+03      0.034       10        1   ++
    1            0.16            -1.2            -2.8            -1.3            0.38           -0.46            0.27      5.2e+03      0.013    1e+02        1   ++
    2            0.24            -1.3              -3            -1.1            0.53           -0.44            0.33      5.2e+03    0.00083    1e+03      1.1   ++
    3            0.25            -1.3            -3.1            -1.1            0.58           -0.43            0.33      5.2e+03    5.1e-05    1e+04        1   ++
    4            0.25            -1.3            -3.1            -1.1            0.58           -0.43            0.33      5.2e+03    2.8e-08    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000057
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.22            -0.6              -1               0               0               0         -0.0001               0               0           -0.25          0.0035               0               0      5.5e+03        2.7       10        1   ++
    1            0.67            -1.2            -1.5               0               0               0         -0.0046               0               0           -0.15            0.27               0               0      5.4e+03       0.46    1e+02        1   ++
    2            0.72            -1.3            -1.6               0               0               0         -0.0056               0               0           -0.17            0.27               0               0      5.4e+03      0.021    1e+03        1   ++
    3            0.72            -1.3            -1.6               0               0               0         -0.0057               0               0           -0.17            0.27               0               0      5.4e+03    4.4e-05    1e+04        1   ++
    4            0.72            -1.3            -1.6               0               0               0         -0.0057               0               0           -0.17            0.27               0               0      5.4e+03      2e-10    1e+04        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000058
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.37           -0.59              -1           -0.89           -0.33           -0.13      5.3e+03      0.036       10        1   ++
    1             0.4            -1.3            -1.6              -1           -0.22            0.22      5.2e+03     0.0091    1e+02        1   ++
    2             0.4            -1.3            -1.7              -1           -0.24            0.25      5.2e+03    0.00022    1e+03        1   ++
    3             0.4            -1.3            -1.7              -1           -0.24            0.25      5.2e+03    2.4e-07    1e+03        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000059
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.65            -0.8             0.7              -1           -0.96               1           -0.56           -0.28           -0.31      5.3e+03      0.041       10        1   ++
    1           -0.65            -0.8             0.7              -1           -0.96               1           -0.56           -0.28           -0.31      5.3e+03      0.041     0.93    -0.12    -
    2           -0.73            -1.2             1.6            -1.7           -0.88            0.53           -0.53           0.072           -0.64        5e+03       0.02      9.3      1.1   ++
    3           -0.73            -1.2             1.6            -1.7           -0.88            0.53           -0.53           0.072           -0.64        5e+03       0.02     0.83       -3    -
    4           -0.64            -1.2             2.2            -2.5            -1.5             0.1           -0.63            0.31            -1.1      4.9e+03     0.0057      8.3        1   ++
    5           -0.46            -1.1               2              -3            -1.5           0.089            -0.6            0.47            -1.8      4.8e+03     0.0013       83      1.1   ++
    6           -0.46            -1.1               2              -3            -1.5           0.085           -0.61            0.48              -2      4.8e+03    6.5e-05  8.3e+02        1   ++
    7           -0.46            -1.1               2              -3            -1.5           0.085           -0.61            0.48              -2      4.8e+03    1.7e-07  8.3e+02        1   ++
Considering neighbor 4/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000060
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.61           -0.75           -0.91              -1            -0.5           -0.25      5.4e+03      0.034       10        1   ++
    1            0.25            -1.2              -3              -1           -0.28            0.24      5.1e+03      0.015    1e+02      1.1   ++
    2            0.34            -1.3            -3.3            -1.1            -0.3             0.3      5.1e+03    0.00068    1e+03        1   ++
    3            0.34            -1.3            -3.3            -1.1            -0.3             0.3      5.1e+03    1.3e-06    1e+03        1   ++
Considering neighbor 5/20 for current solution
Considering neighbor 6/20 for current solution
Attempt 11/100
Considering neighbor 0/20 for current solution
Attempt 12/100
Considering neighbor 0/20 for current solution
Attempt 13/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000061
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.58           -0.69            0.43            0.12           -0.58           -0.94         -0.0027           -0.75           0.011            0.12           -0.35      5.3e+03        2.7       10      1.1   ++
    1           -0.47              -1            0.77            0.37           -0.96            -1.1         -0.0051            -0.7            0.31          -0.022           -0.48      5.2e+03       0.45    1e+02      1.1   ++
    2           -0.56            -1.1            0.95            0.52              -1            -1.1         -0.0059           -0.72            0.33          -0.021           -0.51      5.2e+03      0.036    1e+03      1.1   ++
    3           -0.57            -1.1            0.97            0.55              -1            -1.1         -0.0059           -0.72            0.33          -0.022            -0.5      5.2e+03    0.00032    1e+04        1   ++
    4           -0.57            -1.1            0.97            0.55              -1            -1.1         -0.0059           -0.72            0.33          -0.022            -0.5      5.2e+03    1.1e-06    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000062
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.45           -0.67            0.68           -0.95               2           -0.91            -0.5           -0.27           -0.33      5.8e+03       0.14        1     0.58    +
    1           -0.78            -1.3             1.7           -0.38             1.8            -1.1           -0.53            0.15            -0.9      5.1e+03      0.028       10     0.95   ++
    2           -0.78            -1.3             1.7           -0.38             1.8            -1.1           -0.53            0.15            -0.9      5.1e+03      0.028        5 -2.5e+03    -
    3           -0.78            -1.3             1.7           -0.38             1.8            -1.1           -0.53            0.15            -0.9      5.1e+03      0.028      2.5      -13    -
    4           -0.78            -1.3             1.7           -0.38             1.8            -1.1           -0.53            0.15            -0.9      5.1e+03      0.028      1.2    0.071    -
    5            -1.1            -1.3               2           -0.92            0.56            -1.5           -0.72            0.23            -1.2      4.9e+03      0.031       12     0.95   ++
    6           -0.34            -1.1             2.1            -1.7          -0.041            -1.5           -0.51            0.46            -1.8      4.8e+03     0.0035       12     0.82    +
    7           -0.34            -1.1             2.1            -1.7            0.21            -1.5           -0.54            0.49              -2      4.8e+03     0.0038  1.2e+02     0.99   ++
    8           -0.39            -1.1             2.1            -1.6            0.22            -1.5           -0.56            0.48              -2      4.8e+03    4.7e-05  1.2e+03     0.99   ++
    9           -0.39            -1.1             2.1            -1.6            0.22            -1.5           -0.56            0.48              -2      4.8e+03    7.9e-09  1.2e+03        1   ++
Considering neighbor 1/20 for current solution
*** New pareto solution:
asc:MALE-GA;train_cost_catalog:log;train_headway_catalog:without_headway;train_tt_catalog:boxcox [9664.011630249151, np.float64(9725.391278360727), 9]
Attempt 14/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000063
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0              -1            0.11              -1           -0.27             1.1          -0.047              -1      5.6e+03      0.042       10      1.1   ++
    1              -1            0.11              -1           -0.27             1.1          -0.047              -1      5.6e+03      0.042        5 -1.4e+07    -
    2              -1            0.11              -1           -0.27             1.1          -0.047              -1      5.6e+03      0.042      2.5 -2.1e+02    -
    3              -1            0.11              -1           -0.27             1.1          -0.047              -1      5.6e+03      0.042      1.2    -0.26    -
    4            -1.4             1.4            -1.9            -1.1            0.99           -0.38            -1.1      5.1e+03      0.023       12      1.1   ++
    5            -1.4             1.4            -1.9            -1.1            0.99           -0.38            -1.1      5.1e+03      0.023      1.2      -12    -
    6            -1.3             2.5              -3              -2           -0.19           -0.31            -1.4        5e+03      0.041      1.2      0.5    +
    7            -1.3             2.1            -2.9            -1.4           -0.13           -0.18            -1.8        5e+03     0.0015       12     0.98   ++
    8            -1.2             2.1              -3            -1.5             0.1           -0.19            -1.9      4.9e+03      0.002  1.2e+02     0.91   ++
    9            -1.2             2.1              -3            -1.5           0.091           -0.19            -1.9      4.9e+03    1.9e-05  1.2e+03        1   ++
   10            -1.2             2.1              -3            -1.5           0.091           -0.19            -1.9      4.9e+03    2.3e-08  1.2e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 15/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000064
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.46           -0.64            0.57           -0.92             1.9              -1           -0.45           -0.25           -0.24      5.5e+03      0.087        1     0.73    +
    1           -0.56            -1.1             1.6              -1             1.2           -0.95           -0.47            0.12           -0.36        5e+03      0.019       10      1.2   ++
    2           -0.56            -1.1             1.6              -1             1.2           -0.95           -0.47            0.12           -0.36        5e+03      0.019      1.6      -11    -
    3           -0.56            -1.1             1.6              -1             1.2           -0.95           -0.47            0.12           -0.36        5e+03      0.019      0.8    -0.46    -
    4           -0.55            -1.2             1.9            -1.5            0.42            -1.1           -0.48             0.3            -0.4      4.9e+03      0.017        8     0.99   ++
    5           -0.21            -1.1             1.9            -1.7            0.33            -1.1           -0.42            0.41           -0.45      4.9e+03    0.00079       80     0.98   ++
    6           -0.21            -1.1             1.9            -1.7            0.33            -1.1           -0.42            0.41           -0.45      4.9e+03    3.4e-06       80        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000065
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.37           -0.71            0.82           -0.68              -1               1         -0.0024           -0.47           -0.17           -0.36      5.2e+03        2.6       10      1.1   ++
    1           -0.48           -0.93             1.9           -0.98            -1.9           -0.44         -0.0054           -0.89            0.34            -1.5        5e+03       0.88       10      0.6    +
    2           -0.48            -1.1               2           -0.95            -1.1           -0.44         -0.0065           -0.88            0.49            -1.9      4.9e+03      0.088    1e+02     0.95   ++
    3           -0.42            -1.1               2              -1            -1.7            0.27         -0.0068           -0.96            0.47              -2      4.9e+03       0.05    1e+02     0.48    +
    4           -0.38            -1.1               2            -1.1            -1.5            0.17         -0.0069           -0.89            0.45            -1.9      4.9e+03      0.011    1e+03        1   ++
    5            -0.4            -1.1               2              -1            -1.5             0.1         -0.0068            -0.9            0.46            -1.9      4.9e+03    0.00016    1e+04     0.99   ++
    6            -0.4            -1.1               2              -1            -1.5             0.1         -0.0068            -0.9            0.46            -1.9      4.9e+03    5.9e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000066
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.43           -0.62           -0.89             1.8              -1           -0.45           -0.24      5.6e+03      0.083        1     0.72    +
    1            0.39            -1.5            -1.6            0.85              -1           -0.65            0.58      5.2e+03      0.028       10     0.94   ++
    2            0.48            -1.3            -1.9            0.42            -1.1           -0.21             0.3      5.1e+03     0.0096    1e+02     0.95   ++
    3            0.36            -1.3            -1.7            0.45            -1.1           -0.29             0.3      5.1e+03     0.0004    1e+03     0.98   ++
    4            0.36            -1.3            -1.7            0.45            -1.1           -0.29             0.3      5.1e+03    6.7e-07    1e+03        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000067
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.46           -0.67             0.2          -0.012            -0.9             1.8              -1           -0.33           -0.15           -0.23          -0.037      5.5e+03      0.064        1     0.78    +
    1            -0.4            -1.3             1.1           0.055            -1.6             0.8              -1           -0.44            0.26            0.15           -0.11      5.1e+03      0.016       10     0.99   ++
    2           -0.31            -1.1            0.94            0.62            -1.8            0.42            -1.1           -0.31            0.33           0.069           -0.16      5.1e+03     0.0071    1e+02     0.95   ++
    3           -0.41            -1.1            0.95            0.55            -1.7            0.44            -1.1           -0.35            0.31           0.075           -0.15      5.1e+03    0.00024    1e+03     0.99   ++
    4           -0.41            -1.1            0.95            0.55            -1.7            0.44            -1.1           -0.35            0.31           0.075           -0.15      5.1e+03    2.3e-07    1e+03        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000068
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.63           -0.89               0               0               0           -0.88         -0.0029               0               0           -0.94          -0.049               0               0      5.5e+03        2.6       10        1   ++
    1            -0.5            -1.3               0               0               0           -0.94         -0.0053               0               0            -1.1            0.15               0               0      5.5e+03       0.33    1e+02      1.1   ++
    2           -0.47            -1.4               0               0               0           -0.95         -0.0059               0               0            -1.1            0.14               0               0      5.5e+03      0.012    1e+03        1   ++
    3           -0.47            -1.4               0               0               0           -0.95         -0.0059               0               0            -1.1            0.14               0               0      5.5e+03    1.7e-05    1e+04        1   ++
    4           -0.47            -1.4               0               0               0           -0.95         -0.0059               0               0            -1.1            0.14               0               0      5.5e+03      3e-11    1e+04        1   ++
Considering neighbor 4/20 for current solution
Considering neighbor 5/20 for current solution
Attempt 16/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000069
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.67           0.026         -0.0067            0.56              -1             1.8           -0.99         -0.0027           -0.35           -0.18          -0.041           -0.23      5.5e+03        1.8        1     0.77    +
    1              -1            0.47           0.027             1.6            -1.4            0.98           -0.98         -0.0067           -0.46          0.0012          -0.084           -0.33        5e+03       0.57       10      1.1   ++
    2           -0.82            0.66            0.43             1.8            -2.2            0.14            -1.1         -0.0062           0.021           0.007           -0.35           -0.34        5e+03      0.044       10     0.58    +
    3            -1.2            0.71            0.47             1.9            -1.7            0.29            -1.1         -0.0062            -0.2           0.025           -0.32           -0.24        5e+03     0.0028    1e+02        1   ++
    4            -1.2            0.71            0.48             1.9            -1.7            0.38            -1.1         -0.0062           -0.21           0.029            -0.3           -0.26      4.9e+03    0.00098    1e+03     0.98   ++
    5            -1.2            0.71            0.48             1.9            -1.7            0.38            -1.1         -0.0062           -0.21           0.029            -0.3           -0.26      4.9e+03    6.2e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000070
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.71           -0.96               2           -0.77        -0.00097           -0.42        6e+03        1.9        1     0.55    +
    1           -0.75           -0.47             1.9            -1.8         -0.0059           -0.26      5.5e+03       0.32       10     0.92   ++
    2           -0.75           -0.47             1.9            -1.8         -0.0059           -0.26      5.5e+03       0.32        3      -55    -
    3           -0.75           -0.47             1.9            -1.8         -0.0059           -0.26      5.5e+03       0.32      1.5     -1.7    -
    4           -0.76            -1.4            0.36            -2.2        -9.1e-05          -0.023      5.3e+03       0.25      1.5     0.79    +
    5           -0.23            -1.7            0.54            -2.3         -0.0053          -0.045      5.2e+03      0.061       15     0.92   ++
    6           -0.25            -1.7            0.48            -2.4         -0.0053          -0.048      5.2e+03    0.00024  1.5e+02        1   ++
    7           -0.25            -1.7            0.48            -2.4         -0.0053          -0.048      5.2e+03    2.1e-06  1.5e+02        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000071
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.53          -0.061         -0.0074            0.31              -1            -0.5         -0.0042            -0.4           -0.22          -0.027           -0.14      5.4e+03        2.4       10        1   ++
    1           -0.93            0.41             0.2             2.1            -1.6           -0.99         -0.0052           -0.19           0.017            -0.2           -0.21        5e+03        1.1    1e+02     0.99   ++
    2            -1.2            0.67             0.4               2            -1.7            -1.1          -0.006            -0.2          0.0097            -0.3           -0.22        5e+03      0.082    1e+03        1   ++
    3            -1.2            0.72            0.45               2            -1.7            -1.1         -0.0062            -0.2          0.0086            -0.3            -0.2        5e+03     0.0016    1e+04        1   ++
    4            -1.2            0.72            0.45               2            -1.7            -1.1         -0.0062            -0.2          0.0086            -0.3            -0.2        5e+03    8.9e-07    1e+04        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 17/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000072
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.95            0.38              -1           -0.61         -0.0045           -0.85           -0.21      5.4e+03        2.4       10        1   ++
    1           -0.76             2.1            -2.9              -1         -0.0053           -0.22           -0.29        5e+03       0.91    1e+02     0.99   ++
    2           -0.77               2            -3.2            -1.1         -0.0061           -0.21           -0.29        5e+03      0.045    1e+03        1   ++
    3           -0.77               2            -3.2            -1.1         -0.0062           -0.21            -0.3        5e+03    0.00024    1e+04        1   ++
    4           -0.77               2            -3.2            -1.1         -0.0062           -0.21            -0.3        5e+03    9.4e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000073
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.66          -0.081          -0.015              -1           -0.29           -0.35           -0.27          -0.023      5.6e+03      0.058       10        1   ++
    1            -1.1             0.8            0.64            -1.5            -1.1          -0.072          -0.072           -0.68      5.3e+03      0.013    1e+02        1   ++
    2            -1.4             1.1            0.94            -1.5            -1.1          -0.083          -0.081           -0.72      5.3e+03     0.0014    1e+03      1.1   ++
    3            -1.5             1.2            0.99            -1.5            -1.1          -0.082          -0.083           -0.73      5.3e+03    2.9e-05    1e+04        1   ++
    4            -1.5             1.2            0.99            -1.5            -1.1          -0.082          -0.083           -0.73      5.3e+03    1.1e-08    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000074
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.53            0.21              -1           -0.24         -0.0043           -0.52           -0.14      5.5e+03        2.5       10        1   ++
    1           -0.88             2.4            -1.4            -1.3         -0.0052           -0.24            -1.3        5e+03       0.97    1e+02     0.96   ++
    2           -0.92             2.2            -1.6            -1.5          -0.006           -0.28            -1.8      4.9e+03      0.029    1e+03        1   ++
    3           -0.92             2.2            -1.6            -1.5         -0.0061           -0.28            -1.8      4.9e+03    0.00023    1e+04        1   ++
    4           -0.92             2.2            -1.6            -1.5         -0.0061           -0.28            -1.8      4.9e+03    5.6e-06    1e+04        1   ++
Considering neighbor 2/20 for current solution
*** New pareto solution:
asc:GA;train_cost_catalog:log;train_headway_catalog:with_headway;train_tt_catalog:log [9879.020121111203, np.float64(9926.759847420206), 7]
Attempt 18/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000075
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.33           -0.57            0.63              -1               0               0               0               0               0           -0.27          -0.067           -0.26               0               0      5.4e+03      0.048       10        1   ++
    1          -0.054           -0.99             1.7            -1.6               0               0               0               0               0          -0.078            0.37            -1.1               0               0      5.1e+03      0.016    1e+02        1   ++
    2          -0.058            -1.2             1.8            -1.6               0               0               0               0               0            -0.1            0.39            -1.4               0               0      5.1e+03    0.00086    1e+03        1   ++
    3           -0.06            -1.2             1.8            -1.6               0               0               0               0               0            -0.1            0.39            -1.4               0               0      5.1e+03    6.1e-06    1e+04        1   ++
    4           -0.06            -1.2             1.8            -1.6               0               0               0               0               0            -0.1            0.39            -1.4               0               0      5.1e+03    3.1e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000076
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.45            -0.7              -1               0               0               0               0               0           -0.43           -0.12               0               0      5.6e+03      0.044       10        1   ++
    1            0.32            -1.1            -2.8               0               0               0               0               0           -0.13            0.31               0               0      5.4e+03      0.013    1e+02        1   ++
    2            0.38            -1.2              -3               0               0               0               0               0           -0.12            0.32               0               0      5.4e+03    0.00038    1e+03        1   ++
    3            0.38            -1.2              -3               0               0               0               0               0           -0.12            0.32               0               0      5.4e+03    3.7e-07    1e+03        1   ++
Considering neighbor 1/20 for current solution
Considering neighbor 2/20 for current solution
Attempt 19/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000077
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.41           -0.63             0.2         -0.0082              -1           -0.71               1           -0.28          -0.099           -0.21          -0.035      5.4e+03      0.037       10        1   ++
    1           -0.32            -1.1            0.73            0.33            -1.5            -1.3           -0.18           -0.35            0.22          -0.053           -0.48      5.2e+03      0.019       10     0.81    +
    2           -0.48            -1.2            0.93            0.51            -1.5            -1.2            0.15           -0.35            0.25          -0.077           -0.59      5.2e+03     0.0052    1e+02      1.2   ++
    3           -0.48            -1.2            0.96            0.54            -1.6            -1.2            0.36           -0.32            0.24          -0.074           -0.57      5.2e+03     0.0012    1e+03      1.1   ++
    4           -0.47            -1.2            0.96            0.54            -1.6            -1.1            0.41           -0.31            0.24          -0.074           -0.56      5.2e+03    4.5e-05    1e+04        1   ++
    5           -0.47            -1.2            0.96            0.54            -1.6            -1.1            0.41           -0.31            0.24          -0.074           -0.56      5.2e+03    1.6e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000078
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.47            -0.7            0.44              -1           -0.64               1          0.0022           -0.28          -0.067           -0.19      5.3e+03        2.7       10      1.1   ++
    1           -0.47            -0.7            0.44              -1           -0.64               1          0.0022           -0.28          -0.067           -0.19      5.3e+03        2.7      1.3     -3.2    -
    2           -0.12              -1             1.7            -1.4            -1.2            0.84         -0.0024           -0.33            0.21           -0.62      4.9e+03        0.7       13        1   ++
    3           -0.12              -1             1.7            -1.4            -1.2            0.84         -0.0024           -0.33            0.21           -0.62      4.9e+03        0.7     0.64    0.017    -
    4           0.019            -1.2             2.2            -1.6            -1.4             0.2         -0.0063           -0.52            0.31            -1.1      4.8e+03       0.15      6.4      1.1   ++
    5          -0.071            -1.2             2.2            -1.6            -1.5          -0.045         -0.0066           -0.68            0.45            -1.8      4.8e+03       0.03       64        1   ++
    6          -0.071            -1.2             2.2            -1.6            -1.5          -0.036         -0.0066           -0.69            0.46              -2      4.8e+03     0.0014  6.4e+02        1   ++
    7          -0.071            -1.2             2.2            -1.6            -1.5          -0.036         -0.0066           -0.69            0.46              -2      4.8e+03    4.6e-06  6.4e+02        1   ++
Considering neighbor 1/20 for current solution
*** New pareto solution:
asc:MALE-GA;train_cost_catalog:boxcox;train_headway_catalog:with_headway;train_tt_catalog:log [9640.41233106946, np.float64(9708.61194008232), 10]
Attempt 20/100
Considering neighbor 0/20 for current solution
Attempt 21/100
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000079
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.38           -0.79           -0.59           -0.93           -0.62          0.0095      5.4e+03      0.038       10      1.1   ++
    1           -0.11            -1.1           -0.98              -1           -0.63            0.34      5.3e+03     0.0068    1e+02      1.1   ++
    2          -0.075            -1.2              -1            -1.1           -0.63            0.36      5.3e+03    0.00023    1e+03        1   ++
    3          -0.075            -1.2              -1            -1.1           -0.63            0.36      5.3e+03    2.9e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000080
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost     lambda_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.67              -1               0               0               0           -0.83             1.1               0               0           -0.85           -0.14               0               0      5.6e+03      0.036       10        1   ++
    1           -0.67              -1               0               0               0           -0.83             1.1               0               0           -0.85           -0.14               0               0      5.6e+03      0.036        1       -4    -
    2           -0.63            -1.4               0               0               0            -1.2           0.084               0               0              -1            0.19               0               0      5.5e+03      0.013       10     0.91   ++
    3            -0.8            -1.3               0               0               0            -1.2            0.16               0               0            -1.1            0.21               0               0      5.5e+03    0.00046    1e+02        1   ++
    4            -0.8            -1.3               0               0               0            -1.1            0.18               0               0            -1.1            0.21               0               0      5.5e+03    1.4e-05    1e+03        1   ++
    5            -0.8            -1.3               0               0               0            -1.1            0.18               0               0            -1.1            0.21               0               0      5.5e+03    4.4e-09    1e+03        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000081
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.33           -0.81           -0.63           -0.89           -0.52          -0.039      5.3e+03      0.043       10      1.1   ++
    1           0.038            -1.2            -1.2              -1           -0.47            0.28      5.2e+03     0.0093    1e+02      1.1   ++
    2           0.089            -1.2            -1.2            -1.1           -0.46            0.31      5.2e+03    0.00033    1e+03        1   ++
    3           0.089            -1.2            -1.2            -1.1           -0.46            0.31      5.2e+03    4.1e-07    1e+03        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000082
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.77           -0.89               0               0               0           -0.88               0               0           -0.88           -0.05               0               0      5.5e+03      0.035       10        1   ++
    1           -0.75            -1.3               0               0               0           -0.94               0               0           -0.95            0.15               0               0      5.5e+03     0.0059    1e+02      1.1   ++
    2           -0.75            -1.3               0               0               0           -0.95               0               0           -0.95            0.14               0               0      5.5e+03    0.00018    1e+03        1   ++
    3           -0.75            -1.3               0               0               0           -0.95               0               0           -0.95            0.14               0               0      5.5e+03    1.5e-07    1e+03        1   ++
Considering neighbor 3/20 for current solution
Considering neighbor 4/20 for current solution
Attempt 22/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000083
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.18           -0.82           -0.63           -0.89         -0.0028           -0.55          -0.061      5.3e+03        2.5       10      1.1   ++
    1            0.29            -1.2            -1.1              -1         -0.0051           -0.56            0.28      5.2e+03       0.37    1e+02      1.1   ++
    2            0.37            -1.2            -1.2            -1.1         -0.0058           -0.58            0.31      5.2e+03      0.017    1e+03        1   ++
    3            0.38            -1.2            -1.2            -1.1         -0.0059           -0.58            0.31      5.2e+03    3.9e-05    1e+04        1   ++
    4            0.38            -1.2            -1.2            -1.1         -0.0059           -0.58            0.31      5.2e+03    6.4e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000084
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068       10     0.94   ++
    1           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068      4.2 -1.4e+05    -
    2           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068      2.1 -1.3e+02    -
    3           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068      1.1     -9.9    -
    4           -0.38           -0.76           -0.61           -0.87               2           -0.72            0.11      5.6e+03      0.068     0.53    -0.41    -
    5          -0.077           -0.94            -1.1           -0.59             1.8           -0.53            0.38      5.3e+03     0.0089      5.3      1.1   ++
    6          -0.077           -0.94            -1.1           -0.59             1.8           -0.53            0.38      5.3e+03     0.0089      2.6   -6e+02    -
    7          -0.077           -0.94            -1.1           -0.59             1.8           -0.53            0.38      5.3e+03     0.0089      1.3     -5.5    -
    8            0.33            -1.4            -1.1            -1.1            0.44           -0.54            0.33      5.3e+03      0.021      1.3     0.67    +
    9           0.014            -1.2            -1.1            -1.1            0.61            -0.6            0.33      5.3e+03    0.00094       13        1   ++
   10           0.014            -1.2            -1.1            -1.1            0.61            -0.6            0.33      5.3e+03    4.5e-06       13        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000085
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.51            -0.8               1            -0.6           -0.88           -0.46           -0.15           -0.21      5.1e+03      0.045       10      1.1   ++
    1           -0.54           -0.96             1.7            -1.1            -1.1            -0.6            0.36           -0.37        5e+03      0.012    1e+02      1.1   ++
    2           -0.53            -1.1             1.9            -1.2            -1.1           -0.61            0.41           -0.41      4.9e+03     0.0007    1e+03        1   ++
    3           -0.53            -1.1             1.9            -1.2            -1.1           -0.61            0.41           -0.41      4.9e+03    4.3e-06    1e+03        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000086
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.47            -0.7            0.44              -1           -0.77          0.0019           -0.27          -0.061           -0.18      5.2e+03        2.6       10      1.1   ++
    1          -0.004              -1               2            -1.6              -1         -0.0044           -0.46            0.32           -0.32      4.9e+03       0.99    1e+02        1   ++
    2             0.1            -1.2               2            -1.7            -1.1         -0.0064           -0.52            0.37           -0.39      4.9e+03      0.083    1e+03      1.1   ++
    3            0.11            -1.2             2.1            -1.7            -1.1         -0.0066           -0.52            0.37           -0.39      4.9e+03    0.00032    1e+04        1   ++
    4            0.11            -1.2             2.1            -1.7            -1.1         -0.0066           -0.52            0.37           -0.39      4.9e+03    6.9e-06    1e+05        1   ++
    5            0.11            -1.2             2.1            -1.7            -1.1         -0.0066           -0.52            0.37           -0.39      4.9e+03      1e-07    1e+05        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000087
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0          -0.083           -0.77           -0.62               0               0               0         -0.0027               0               0           -0.47           0.023               0               0      5.6e+03        2.9       10      1.1   ++
    1            0.34            -1.1            -1.1               0               0               0          -0.005               0               0           -0.38            0.33               0               0      5.4e+03       0.37    1e+02      1.1   ++
    2            0.41            -1.2            -1.1               0               0               0         -0.0057               0               0           -0.39            0.32               0               0      5.4e+03      0.018    1e+03        1   ++
    3            0.41            -1.2            -1.1               0               0               0         -0.0057               0               0           -0.39            0.32               0               0      5.4e+03    3.6e-05    1e+04        1   ++
    4            0.41            -1.2            -1.1               0               0               0         -0.0057               0               0           -0.39            0.32               0               0      5.4e+03    1.4e-10    1e+04        1   ++
Considering neighbor 4/20 for current solution
Considering neighbor 5/20 for current solution
Attempt 23/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000088
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.58           -0.83             0.7              -1           -0.96        -0.00091           -0.53            -0.2           -0.22      5.2e+03        2.6       10      1.1   ++
    1          -0.099           -0.98             1.8            -2.8              -1          -0.005           -0.54            0.34           -0.38      4.9e+03       0.69    1e+02      1.1   ++
    2            0.04            -1.1             1.9            -3.2            -1.1         -0.0066           -0.58            0.41           -0.42      4.9e+03      0.057    1e+03      1.1   ++
    3           0.049            -1.2               2            -3.2            -1.1         -0.0068           -0.59            0.41           -0.43      4.9e+03    0.00035    1e+04        1   ++
    4           0.049            -1.2               2            -3.2            -1.1         -0.0068           -0.59            0.41           -0.43      4.9e+03    9.9e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000089
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.44           -0.59            0.47              -1           -0.76           -0.34           -0.17           -0.18      5.2e+03      0.044       10        1   ++
    1           -0.21              -1               2            -1.6              -1           -0.36            0.33           -0.35      4.9e+03      0.018    1e+02        1   ++
    2            -0.2            -1.2               2            -1.7            -1.1           -0.39            0.37           -0.42      4.9e+03     0.0011    1e+03        1   ++
    3            -0.2            -1.2               2            -1.7            -1.1           -0.39            0.38           -0.42      4.9e+03    8.5e-06    1e+04        1   ++
    4            -0.2            -1.2               2            -1.7            -1.1           -0.39            0.38           -0.42      4.9e+03    5.5e-10    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 20 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000090
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03      0.044       10      1.1   ++
    1      5.4e+03       0.01    1e+02      1.1   ++
    2      5.4e+03    0.00066    1e+03        1   ++
    3      5.4e+03    3.5e-06    1e+03        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000091
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma asc_car_diff_wi beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.87           -0.94               1               0               0               0           -0.89               0               0            -0.7           -0.27           -0.19               0               0      5.4e+03      0.041       10      1.1   ++
    1            -1.3            -1.1             1.9               0               0               0           -0.99               0               0            -1.1            0.25           -0.15               0               0      5.2e+03      0.012    1e+02      1.1   ++
    2            -1.4            -1.2               2               0               0               0              -1               0               0            -1.1            0.25           -0.16               0               0      5.2e+03     0.0008    1e+03        1   ++
    3            -1.4            -1.2               2               0               0               0              -1               0               0            -1.1            0.25           -0.16               0               0      5.2e+03    4.2e-06    1e+03        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000092
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.54           -0.74             0.8              -1               0               0               0               0               0           -0.44           -0.14           -0.33               0               0      5.4e+03      0.049       10        1   ++
    1           -0.17           -0.96             1.6            -2.8               0               0               0               0               0           -0.15            0.39            -1.3               0               0      5.1e+03      0.018    1e+02      1.1   ++
    2           -0.14            -1.1             1.7              -3               0               0               0               0               0           -0.16            0.43            -1.5               0               0      5.1e+03    0.00093    1e+03        1   ++
    3           -0.14            -1.1             1.7              -3               0               0               0               0               0           -0.16            0.43            -1.5               0               0      5.1e+03    4.8e-06    1e+03        1   ++
Considering neighbor 4/20 for current solution
Considering neighbor 5/20 for current solution
Attempt 24/100
Considering neighbor 0/20 for current solution
Attempt 25/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000093
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.45           -0.73             0.3           -0.01           -0.94               2              -1               1           -0.37           -0.15           -0.27          -0.048      5.8e+03       0.11        1     0.64    +
    1           -0.58            -1.3             1.3            0.31            -1.7               1            -1.7            0.44           -0.95            0.51            0.37           -0.41      5.3e+03      0.045       10     0.94   ++
    2           -0.33            -1.1            0.91            0.51            -1.8            0.51              -1             0.5            -0.2             0.3           -0.12           -0.57      5.2e+03      0.014    1e+02        1   ++
    3           -0.48            -1.1            0.95            0.52            -1.6            0.41            -1.1            0.57           -0.36            0.29          -0.059           -0.52      5.1e+03     0.0015    1e+03        1   ++
    4           -0.48            -1.1            0.95            0.52            -1.6            0.38            -1.1            0.53           -0.35            0.29          -0.061           -0.52      5.1e+03    5.8e-05    1e+04        1   ++
    5           -0.48            -1.1            0.95            0.52            -1.6            0.38            -1.1            0.53           -0.35            0.29          -0.061           -0.52      5.1e+03    2.4e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000094
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.45           -0.73            0.31         -0.0099           -0.93               2           -0.96           -0.36           -0.14           -0.27          -0.049      5.8e+03       0.12        1      0.6    +
    1           -0.96            -1.7             1.2            0.13           0.057             2.1           -0.99           -0.87             0.3           0.056           -0.32      5.7e+03       0.33        1     0.28    +
    2           -0.96            -1.7             1.2            0.13           0.057             2.1           -0.99           -0.87             0.3           0.056           -0.32      5.7e+03       0.33      0.5       -2    -
    3           -0.96            -1.7             1.2            0.13           0.057             2.1           -0.99           -0.87             0.3           0.056           -0.32      5.7e+03       0.33     0.25     -0.2    -
    4            -1.2            -1.8            0.95            0.13           -0.19               2           -0.96              -1            0.12         -0.0082           -0.33      5.5e+03       0.04     0.25     0.74    +
    5            -1.1            -1.5            0.99            0.15           -0.24             1.9            -1.1           -0.92            0.21           0.052           -0.33      5.4e+03      0.011      2.5     0.97   ++
    6            -1.1            -1.5            0.99            0.15           -0.24             1.9            -1.1           -0.92            0.21           0.052           -0.33      5.4e+03      0.011      1.2   -0.032    -
    7            -1.3              -1            0.76            0.23           -0.71            0.63            -1.1           -0.88            0.19           0.022           -0.35      5.3e+03      0.026      1.2     0.72    +
    8           -0.56            -1.1            0.97            0.59            -1.5            0.12            -1.1           -0.38            0.31          -0.066           -0.59      5.2e+03     0.0056       12     0.93   ++
    9           -0.51            -1.1            0.95            0.51            -1.6            0.35            -1.1           -0.35            0.31          -0.073           -0.62      5.2e+03     0.0027       12     0.86    +
   10           -0.54            -1.1            0.95            0.51            -1.5            0.32            -1.1           -0.37            0.31          -0.071           -0.62      5.2e+03    6.7e-05  1.2e+02        1   ++
   11           -0.54            -1.1            0.95            0.51            -1.5            0.32            -1.1           -0.37            0.31          -0.071           -0.62      5.2e+03    1.1e-07  1.2e+02        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000095
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.57           -0.95            0.17         -0.0032           -0.94             1.9              -1          0.0067           -0.17            0.09           -0.12          -0.049      5.7e+03        2.4        1     0.75    +
    1           -0.34            -1.3             1.2            0.25            -1.6            0.89            -1.1         -0.0025           -0.79            0.55            0.25           -0.39      5.2e+03       0.86       10        1   ++
    2          -0.091            -1.1            0.94            0.51            -1.8            0.39            -1.1         -0.0059           -0.38            0.33          -0.095           -0.66      5.2e+03      0.014    1e+02      1.1   ++
    3           -0.26            -1.1            0.96             0.5            -1.5            0.35            -1.1         -0.0059           -0.49            0.31          -0.068           -0.62      5.1e+03     0.0012    1e+03        1   ++
    4           -0.26            -1.1            0.96             0.5            -1.5            0.32            -1.1         -0.0059           -0.48            0.31          -0.069           -0.61      5.1e+03    5.7e-05    1e+04     0.99   ++
    5           -0.26            -1.1            0.96             0.5            -1.5            0.32            -1.1         -0.0059           -0.48            0.31          -0.069           -0.61      5.1e+03    1.5e-07    1e+04        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 26/100
Considering neighbor 0/20 for current solution
Attempt 27/100
Considering neighbor 0/20 for current solution
Attempt 28/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000096
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.53            0.32              -1               0               0               0         -0.0036               0               0           -0.41           -0.16               0               0      5.6e+03        2.6       10        1   ++
    1           -0.53               2            -1.6               0               0               0         -0.0051               0               0            0.14              -1               0               0      5.2e+03       0.87    1e+02     0.97   ++
    2           -0.61             1.9            -1.6               0               0               0         -0.0059               0               0            0.11            -1.3               0               0      5.2e+03      0.039    1e+03        1   ++
    3           -0.62             1.9            -1.6               0               0               0          -0.006               0               0            0.11            -1.3               0               0      5.2e+03    0.00019    1e+04        1   ++
    4           -0.62             1.9            -1.6               0               0               0          -0.006               0               0            0.11            -1.3               0               0      5.2e+03    4.2e-09    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000097
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.53            0.32              -1               0               0               0         -0.0036               0               0           -0.41           -0.16               0               0      5.6e+03        2.6       10        1   ++
    1           -0.53               2            -1.6               0               0               0         -0.0051               0               0            0.14              -1               0               0      5.2e+03       0.87    1e+02     0.97   ++
    2           -0.61             1.9            -1.6               0               0               0         -0.0059               0               0            0.11            -1.3               0               0      5.2e+03      0.039    1e+03        1   ++
    3           -0.62             1.9            -1.6               0               0               0          -0.006               0               0            0.11            -1.3               0               0      5.2e+03    0.00019    1e+04        1   ++
    4           -0.62             1.9            -1.6               0               0               0          -0.006               0               0            0.11            -1.3               0               0      5.2e+03    4.2e-09    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000098
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.65           0.022           -0.01              -1               0               0               0               0               0           -0.22            -0.2          -0.029               0               0      5.7e+03      0.045       10        1   ++
    1           -0.91             0.8            0.63            -1.5               0               0               0               0               0            0.25          -0.088           -0.72               0               0      5.5e+03      0.009    1e+02      1.1   ++
    2            -1.2             1.1             0.9            -1.6               0               0               0               0               0            0.24          -0.083           -0.77               0               0      5.5e+03      0.001    1e+03      1.1   ++
    3            -1.2             1.1            0.94            -1.6               0               0               0               0               0            0.24          -0.084           -0.77               0               0      5.5e+03    1.8e-05    1e+04        1   ++
    4            -1.2             1.1            0.94            -1.6               0               0               0               0               0            0.24          -0.084           -0.77               0               0      5.5e+03      5e-09    1e+04        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000099
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.71            0.23              -1               0               0               0               0               0           -0.31           -0.14               0               0      5.6e+03      0.044       10        1   ++
    1           -0.77             2.1            -1.6               0               0               0               0               0            0.24              -1               0               0      5.3e+03      0.023    1e+02     0.93   ++
    2           -0.88             1.9            -1.6               0               0               0               0               0            0.23            -1.3               0               0      5.2e+03    0.00045    1e+03        1   ++
    3           -0.88             1.9            -1.6               0               0               0               0               0            0.23            -1.3               0               0      5.2e+03    1.6e-06    1e+03        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000100
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.53          -0.019          -0.005              -1           -0.46               1         -0.0034           -0.36           -0.21           -0.03      5.5e+03        2.4       10        1   ++
    1           -0.87            0.83            0.79            -1.5            -1.1           -0.38          -0.005           -0.15          -0.079           -0.65      5.3e+03       0.63       10     0.88    +
    2            -1.2             1.1            0.97            -1.5            -1.4            0.29         -0.0055           -0.29          -0.069            -0.7      5.3e+03      0.046    1e+02     0.91   ++
    3            -1.2             1.2            0.99            -1.5            -1.1            0.36         -0.0055           -0.19          -0.072           -0.66      5.3e+03     0.0008    1e+03     0.97   ++
    4            -1.2             1.2               1            -1.6            -1.1             0.4         -0.0055            -0.2          -0.069           -0.65      5.3e+03    0.00022    1e+04     0.97   ++
    5            -1.2             1.2               1            -1.6            -1.1             0.4         -0.0055            -0.2          -0.069           -0.65      5.3e+03    3.2e-07    1e+04        1   ++
Considering neighbor 4/20 for current solution
Considering neighbor 5/20 for current solution
Attempt 29/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000101
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.22           -0.77           -0.62               0               0               0               0               0           -0.42           0.022               0               0      5.6e+03      0.038       10      1.1   ++
    1             0.1            -1.1            -1.1               0               0               0               0               0           -0.29            0.33               0               0      5.5e+03     0.0078    1e+02      1.1   ++
    2            0.13            -1.2            -1.1               0               0               0               0               0           -0.28            0.33               0               0      5.5e+03    0.00024    1e+03        1   ++
    3            0.13            -1.2            -1.1               0               0               0               0               0           -0.28            0.33               0               0      5.5e+03    3.2e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000102
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0              -1           0.066          -0.017              -1               0               0               0               0               0           -0.39           -0.27          -0.046               0               0      5.7e+03      0.041       10        1   ++
    1           -0.97             0.8            0.62            -2.8               0               0               0               0               0            0.19          -0.051           -0.68               0               0      5.5e+03      0.014    1e+02      1.1   ++
    2            -1.2             1.1            0.85              -3               0               0               0               0               0            0.22          -0.075           -0.76               0               0      5.5e+03    0.00099    1e+03      1.1   ++
    3            -1.2             1.1            0.88              -3               0               0               0               0               0            0.22          -0.076           -0.77               0               0      5.5e+03    1.6e-05    1e+04        1   ++
    4            -1.2             1.1            0.88              -3               0               0               0               0               0            0.22          -0.076           -0.77               0               0      5.5e+03    4.3e-09    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000103
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.5e+03      0.039       10      1.1   ++
    1      5.4e+03      0.009    1e+02      1.1   ++
    2      5.4e+03    0.00054    1e+03      1.1   ++
    3      5.4e+03    4.8e-06    1e+03        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000104
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03      0.038       10      1.1   ++
    1      5.3e+03      0.013    1e+02      1.1   ++
    2      5.3e+03     0.0006    1e+03        1   ++
    3      5.3e+03    3.1e-06    1e+03        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000105
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.64           -0.82            0.18           -0.02            -0.9              -1           -0.41           -0.18           -0.25           -0.04      5.4e+03      0.034       10      1.1   ++
    1           -0.34            -1.1            0.73            0.35            -2.9              -1           -0.39            0.28            0.11          -0.085      5.1e+03      0.016    1e+02      1.1   ++
    2           -0.41            -1.1            0.93            0.52            -3.3            -1.1           -0.37            0.31           0.081           -0.14      5.1e+03     0.0011    1e+03        1   ++
    3           -0.43            -1.1            0.95            0.54            -3.3            -1.1           -0.37            0.32            0.08           -0.14      5.1e+03    7.5e-06    1e+04        1   ++
    4           -0.43            -1.1            0.95            0.54            -3.3            -1.1           -0.37            0.32            0.08           -0.14      5.1e+03    8.6e-10    1e+04        1   ++
Considering neighbor 4/20 for current solution
Considering neighbor 5/20 for current solution
Attempt 30/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000106
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03      0.039       10      1.1   ++
    1      5.3e+03      0.058    1e+02     0.98   ++
    2      5.3e+03     0.0041    1e+03        1   ++
    3      5.3e+03    0.00015    1e+04        1   ++
    4      5.3e+03    1.7e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000107
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03       0.04       10      1.1   ++
    1      5.9e+03       0.04        5 -1.1e+07    -
    2      5.9e+03       0.04      2.5 -1.8e+02    -
    3      5.9e+03       0.04      1.2    0.051    -
    4      5.4e+03      0.043       12      1.1   ++
    5      5.4e+03      0.043      2.7 -3.1e+03    -
    6      5.4e+03      0.043      1.4      -17    -
    7      5.3e+03      0.057      1.4     0.48    +
    8      5.2e+03     0.0044       14     0.91   ++
    9      5.2e+03     0.0019       14     0.89    +
   10      5.2e+03    3.7e-05  1.4e+02        1   ++
   11      5.2e+03      5e-08  1.4e+02        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000108
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost     lambda_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6       10        1   ++
    1           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6      2.1 -2.1e+02    -
    2           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6        1     -2.6    -
    3           -0.39            -1.5               0               0               0            -1.3            0.24         -0.0064               0               0            -1.3           0.078               0               0      5.5e+03       0.58       10        1   ++
    4           -0.51            -1.4               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.22               0               0      5.5e+03      0.022    1e+02     0.97   ++
    5           -0.52            -1.3               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.21               0               0      5.5e+03    5.2e-05    1e+03        1   ++
    6           -0.52            -1.3               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.21               0               0      5.5e+03    1.4e-09    1e+03        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 31/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000109
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost     lambda_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.67              -1               0               0               0           -0.83             1.1               0               0           -0.85           -0.14               0               0      5.6e+03      0.036       10        1   ++
    1           -0.67              -1               0               0               0           -0.83             1.1               0               0           -0.85           -0.14               0               0      5.6e+03      0.036        1       -4    -
    2           -0.63            -1.4               0               0               0            -1.2           0.084               0               0              -1            0.19               0               0      5.5e+03      0.013       10     0.91   ++
    3            -0.8            -1.3               0               0               0            -1.2            0.16               0               0            -1.1            0.21               0               0      5.5e+03    0.00046    1e+02        1   ++
    4            -0.8            -1.3               0               0               0            -1.1            0.18               0               0            -1.1            0.21               0               0      5.5e+03    1.4e-05    1e+03        1   ++
    5            -0.8            -1.3               0               0               0            -1.1            0.18               0               0            -1.1            0.21               0               0      5.5e+03    4.4e-09    1e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 32/100
Considering neighbor 0/20 for current solution
Attempt 33/100
Considering neighbor 0/20 for current solution
Attempt 34/100
Considering neighbor 0/20 for current solution
Attempt 35/100
Biogeme parameters read from biogeme.toml.
Model with 21 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000110
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03        3.3       10      1.1   ++
    1      5.4e+03       0.55    1e+02      1.1   ++
    2      5.4e+03      0.048    1e+03        1   ++
    3      5.4e+03    0.00034    1e+04        1   ++
    4      5.4e+03    1.7e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000111
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.53           -0.81            0.78              -1               0               0               0         0.00034               0               0           -0.42          -0.079           -0.32               0               0      5.4e+03        3.2       10      1.1   ++
    1            0.04           -0.98             1.6            -2.8               0               0               0         -0.0045               0               0           -0.25            0.38            -1.2               0               0      5.1e+03       0.64    1e+02      1.1   ++
    2            0.16            -1.1             1.7              -3               0               0               0         -0.0063               0               0           -0.29            0.42            -1.5               0               0      5.1e+03      0.059    1e+03      1.1   ++
    3            0.17            -1.1             1.8              -3               0               0               0         -0.0065               0               0           -0.29            0.43            -1.5               0               0      5.1e+03    0.00056    1e+04        1   ++
    4            0.17            -1.1             1.8              -3               0               0               0         -0.0065               0               0           -0.29            0.43            -1.5               0               0      5.1e+03    4.8e-08    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 21 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000112
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03        3.3       10      1.1   ++
    1      5.4e+03       0.55    1e+02      1.1   ++
    2      5.4e+03      0.048    1e+03        1   ++
    3      5.4e+03    0.00034    1e+04        1   ++
    4      5.4e+03    1.7e-08    1e+04        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 36/100
Considering neighbor 0/20 for current solution
Attempt 37/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000113
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.83            0.17          0.0037               1           -0.76           -0.99               1         -0.0043           -0.48           -0.17          -0.071           -0.42      5.2e+03        2.5       10      1.1   ++
    1           -0.83            0.17          0.0037               1           -0.76           -0.99               1         -0.0043           -0.48           -0.17          -0.071           -0.42      5.2e+03        2.5     0.82    0.069    -
    2            -1.1            0.57           0.066             1.8            -1.2            -1.2             0.6         -0.0075            -0.4          -0.018           -0.14           -0.81        5e+03       0.69      8.2      1.1   ++
    3            -1.6            0.69            0.52             1.9              -1            -1.6          -0.016         -0.0064           -0.56            0.11           -0.33            -1.7        5e+03      0.033      8.2      0.9    +
    4            -1.6            0.71            0.55             1.9              -1            -1.5           0.081         -0.0063           -0.55            0.12           -0.39            -1.8        5e+03    0.00094       82      1.1   ++
    5            -1.6            0.71            0.55             1.9              -1            -1.5            0.11         -0.0063           -0.54            0.11           -0.39            -1.8        5e+03    4.2e-05  8.2e+02        1   ++
    6            -1.6            0.71            0.55             1.9              -1            -1.5            0.11         -0.0063           -0.54            0.11           -0.39            -1.8        5e+03    1.3e-07  8.2e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000114
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.65           0.022           -0.01              -1               0               0               0               0               0           -0.22            -0.2          -0.029               0               0      5.7e+03      0.045       10        1   ++
    1           -0.91             0.8            0.63            -1.5               0               0               0               0               0            0.25          -0.088           -0.72               0               0      5.5e+03      0.009    1e+02      1.1   ++
    2            -1.2             1.1             0.9            -1.6               0               0               0               0               0            0.24          -0.083           -0.77               0               0      5.5e+03      0.001    1e+03      1.1   ++
    3            -1.2             1.1            0.94            -1.6               0               0               0               0               0            0.24          -0.084           -0.77               0               0      5.5e+03    1.8e-05    1e+04        1   ++
    4            -1.2             1.1            0.94            -1.6               0               0               0               0               0            0.24          -0.084           -0.77               0               0      5.5e+03      5e-09    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000115
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.97            0.51            0.33           -0.63               0               0               0         -0.0026               0               0           -0.47             0.1           -0.43               0               0      5.6e+03        2.7       10      1.1   ++
    1              -1            0.91            0.71            -1.1               0               0               0         -0.0047               0               0          -0.042          -0.054           -0.68               0               0      5.5e+03       0.35    1e+02      1.1   ++
    2            -1.2             1.1            0.89            -1.1               0               0               0         -0.0053               0               0           -0.05          -0.044           -0.68               0               0      5.5e+03      0.026    1e+03        1   ++
    3            -1.2             1.1            0.91            -1.1               0               0               0         -0.0054               0               0           -0.05          -0.044           -0.68               0               0      5.5e+03    0.00018    1e+04        1   ++
    4            -1.2             1.1            0.91            -1.1               0               0               0         -0.0054               0               0           -0.05          -0.044           -0.68               0               0      5.5e+03    1.1e-08    1e+04        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 38/100
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000116
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.93              -1           -0.68         -0.0036           -0.79      5.5e+03        2.3       10        1   ++
    1           -0.36              -3           -0.97         -0.0044           -0.11      5.3e+03       0.12    1e+02      1.1   ++
    2           -0.25            -3.3            -1.1         -0.0052           -0.11      5.3e+03      0.013    1e+03        1   ++
    3           -0.23            -3.4            -1.1         -0.0053           -0.11      5.3e+03    0.00049    1e+04        1   ++
    4           -0.23            -3.4            -1.1         -0.0053           -0.11      5.3e+03    6.8e-05    1e+05        1   ++
    5           -0.23            -3.4            -1.1         -0.0053           -0.11      5.3e+03    2.6e-06    1e+05        1   ++
Considering neighbor 0/20 for current solution
*** New pareto solution:
asc:no_seg;train_cost_catalog:linear;train_headway_catalog:with_headway;train_tt_catalog:sqrt [10562.742717771165, np.float64(10596.842522277595), 5]
Attempt 39/100
Considering neighbor 0/20 for current solution
Attempt 40/100
Biogeme parameters read from biogeme.toml.
Model with 22 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000117
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03      0.039       10        1   ++
    1      5.6e+03     0.0083    1e+02      1.1   ++
    2      5.6e+03    0.00067    1e+03        1   ++
    3      5.6e+03    5.4e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000118
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.71              -1             1.7           -0.82            -0.5      5.6e+03      0.058        1     0.77    +
    1           -0.77            -1.7            0.69            -1.3           -0.35      5.4e+03      0.049       10        1   ++
    2           -0.47            -1.7            0.53              -1           0.017      5.3e+03      0.002    1e+02     0.96   ++
    3           -0.48            -1.7            0.51            -1.1         -0.0043      5.3e+03    1.3e-05    1e+03        1   ++
    4           -0.48            -1.7            0.51            -1.1         -0.0043      5.3e+03    1.8e-09    1e+03        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000119
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0        6e+03       0.12        1     0.57    +
    1        6e+03       0.12      0.5    -0.17    -
    2      5.6e+03      0.022        5     0.91   ++
    3      5.6e+03      0.022      2.5      -12    -
    4      5.6e+03      0.022      1.2    -0.22    -
    5      5.4e+03      0.037      1.2     0.85    +
    6      5.3e+03     0.0087      1.2     0.89    +
    7      5.3e+03    0.00037       12     0.99   ++
    8      5.3e+03    2.9e-06       12        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000120
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03      0.038       10        1   ++
    1      5.6e+03      0.038     0.95     -1.8    -
    2      5.4e+03      0.021      9.5     0.92   ++
    3      5.4e+03    0.00087       95     0.97   ++
    4      5.4e+03    2.2e-05  9.5e+02     0.99   ++
    5      5.4e+03    3.2e-08  9.5e+02        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000121
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0            -0.5           -0.79           0.093         -0.0049           -0.88             1.6              -1          0.0035           -0.21         0.00042           -0.13          -0.038      5.4e+03        2.2        1      0.9    +
    1           -0.18            -1.2             1.1           0.056            -1.5            0.76            -1.1         -0.0049           -0.46            0.21           0.093          -0.099      5.1e+03       0.88       10        1   ++
    2          -0.051            -1.1            0.96            0.57            -1.8            0.39            -1.1         -0.0058           -0.41             0.3           0.068           -0.17      5.1e+03      0.034    1e+02     0.91   ++
    3           -0.12            -1.1            0.96            0.53            -1.7            0.44            -1.1         -0.0059           -0.47            0.31           0.077           -0.14      5.1e+03    0.00022    1e+03        1   ++
    4           -0.12            -1.1            0.96            0.53            -1.7            0.44            -1.1         -0.0059           -0.47            0.31           0.077           -0.14      5.1e+03    7.1e-07    1e+03        1   ++
Considering neighbor 4/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000122
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0            -0.8           -0.64            0.51            0.19           -0.59           -0.84               2           -0.84            0.15            0.14           -0.38      5.5e+03      0.065       10     0.95   ++
    1            -0.8           -0.64            0.51            0.19           -0.59           -0.84               2           -0.84            0.15            0.14           -0.38      5.5e+03      0.065        5 -2.4e+06    -
    2            -0.8           -0.64            0.51            0.19           -0.59           -0.84               2           -0.84            0.15            0.14           -0.38      5.5e+03      0.065      2.5 -1.2e+02    -
    3            -0.8           -0.64            0.51            0.19           -0.59           -0.84               2           -0.84            0.15            0.14           -0.38      5.5e+03      0.065      1.2     -2.6    -
    4          -0.039           -0.91            0.37            0.87            -1.6            -1.6            0.75            0.11           -0.34        -0.00021           -0.18      5.3e+03      0.037      1.2     0.68    +
    5           -0.71              -1            0.85            0.53            -1.1           -0.97            0.71           -0.56            0.32          -0.013           -0.44      5.2e+03     0.0065       12     0.95   ++
    6           -0.78            -1.1            0.95            0.56            -1.1            -1.1            0.56           -0.58            0.31          -0.016           -0.41      5.2e+03    0.00051  1.2e+02     0.97   ++
    7           -0.78            -1.1            0.96            0.56            -1.1            -1.1            0.59           -0.57            0.31          -0.016           -0.41      5.2e+03    1.9e-05  1.2e+03        1   ++
    8           -0.78            -1.1            0.96            0.56            -1.1            -1.1            0.59           -0.57            0.31          -0.016           -0.41      5.2e+03    1.5e-09  1.2e+03        1   ++
Considering neighbor 5/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000123
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost     lambda_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067       10     0.92   ++
    1           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067      4.1 -1.3e+05    -
    2           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067      2.1 -1.2e+02    -
    3           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067        1     -9.9    -
    4           -0.93           -0.64           -0.85               2           -0.56      5.7e+03      0.067     0.52    -0.53    -
    5            -0.7            -1.2           -0.62             1.7           -0.18      5.5e+03     0.0091      5.2      1.1   ++
    6            -0.7            -1.2           -0.62             1.7           -0.18      5.5e+03     0.0091      2.5 -5.6e+02    -
    7            -0.7            -1.2           -0.62             1.7           -0.18      5.5e+03     0.0091      1.3     -5.7    -
    8           -0.56            -1.3            -1.2            0.46           -0.14      5.4e+03      0.012      1.3     0.57    +
    9           -0.78            -1.2            -1.1             0.6           -0.26      5.4e+03    0.00052       13        1   ++
   10           -0.78            -1.2            -1.1            0.63           -0.26      5.4e+03    2.1e-05  1.3e+02        1   ++
   11           -0.78            -1.2            -1.1            0.63           -0.26      5.4e+03      1e-08  1.3e+02        1   ++
Considering neighbor 6/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000124
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.45           -0.68             0.7           -0.72              -1               1           -0.41           -0.18           -0.32      5.2e+03       0.04       10      1.1   ++
    1           -0.72           -0.91             1.9           -0.99            -1.8           -0.33           -0.76            0.35            -1.5        5e+03       0.05       10     0.78    +
    2           -0.78            -1.1               2           -0.98            -1.4           -0.25           -0.78            0.48            -1.9      4.9e+03     0.0018    1e+02      1.1   ++
    3           -0.73            -1.1               2              -1            -1.5             0.1           -0.79            0.47            -1.9      4.9e+03      0.005    1e+03     0.91   ++
    4           -0.72            -1.1               2              -1            -1.5             0.1           -0.77            0.46            -1.9      4.9e+03      6e-05    1e+04     0.99   ++
    5           -0.72            -1.1               2              -1            -1.5             0.1           -0.77            0.46            -1.9      4.9e+03    1.9e-08    1e+04        1   ++
Considering neighbor 7/20 for current solution
Considering neighbor 8/20 for current solution
Attempt 41/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000125
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.93             0.5              -1               0               0               0         -0.0031               0               0           -0.65           -0.25               0               0      5.6e+03        2.7       10        1   ++
    1            -0.6             1.8            -2.8               0               0               0          -0.005               0               0            0.11            -1.1               0               0      5.2e+03       0.68    1e+02        1   ++
    2           -0.63             1.8              -3               0               0               0         -0.0059               0               0           0.094            -1.4               0               0      5.2e+03      0.036    1e+03        1   ++
    3           -0.63             1.8              -3               0               0               0          -0.006               0               0           0.094            -1.4               0               0      5.2e+03    0.00017    1e+04        1   ++
    4           -0.63             1.8              -3               0               0               0          -0.006               0               0           0.094            -1.4               0               0      5.2e+03    3.4e-09    1e+04        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 42/100
Considering neighbor 0/20 for current solution
Attempt 43/100
Biogeme parameters read from biogeme.toml.
Model with 15 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000126
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.52           0.052         -0.0022              -1               0               0               0         -0.0028               0               0           -0.25           -0.14          -0.034               0               0      5.6e+03        2.5       10        1   ++
    1            -0.7            0.81            0.63            -1.5               0               0               0         -0.0047               0               0            0.15          -0.089           -0.71               0               0      5.5e+03       0.44    1e+02      1.1   ++
    2           -0.94             1.1             0.9            -1.6               0               0               0         -0.0053               0               0            0.13          -0.081           -0.76               0               0      5.5e+03       0.05    1e+03      1.1   ++
    3           -0.98             1.1            0.94            -1.6               0               0               0         -0.0053               0               0            0.13          -0.082           -0.76               0               0      5.5e+03    0.00074    1e+04        1   ++
    4           -0.98             1.1            0.94            -1.6               0               0               0         -0.0053               0               0            0.13          -0.082           -0.76               0               0      5.5e+03      2e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000127
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0              -1            0.26           0.015            -0.7           -0.83               1            -0.4           -0.16          -0.087      5.4e+03      0.043       10      1.1   ++
    1            -1.4             0.9            0.74            -1.1            -1.3             0.3           -0.34          -0.016           -0.48      5.3e+03      0.011    1e+02     0.98   ++
    2            -1.6             1.1            0.94            -1.1            -1.1            0.52           -0.28          -0.028           -0.55      5.3e+03     0.0015    1e+03      1.1   ++
    3            -1.6             1.2            0.97            -1.1            -1.1             0.6           -0.27          -0.028           -0.54      5.3e+03    0.00012    1e+04        1   ++
    4            -1.6             1.2            0.97            -1.1            -1.1             0.6           -0.27          -0.028           -0.54      5.3e+03    3.6e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Considering neighbor 2/20 for current solution
Attempt 44/100
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000128
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.42           -0.63            0.19         -0.0097              -1           -0.85           -0.26          -0.087           -0.19          -0.032      5.3e+03      0.036       10        1   ++
    1           -0.21            -1.1            0.73            0.35            -1.6              -1           -0.28            0.24           0.062           -0.14      5.1e+03     0.0098    1e+02      1.1   ++
    2           -0.36            -1.2            0.94            0.54            -1.7              -1           -0.28            0.25           0.053           -0.18      5.1e+03    0.00064    1e+03      1.1   ++
    3           -0.38            -1.2            0.96            0.56            -1.7              -1           -0.28            0.25           0.053           -0.18      5.1e+03    6.5e-06    1e+04        1   ++
    4           -0.38            -1.2            0.96            0.56            -1.7              -1           -0.28            0.25           0.053           -0.18      5.1e+03    8.2e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 45/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000129
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost     lambda_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6       10        1   ++
    1           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6      2.1 -2.1e+02    -
    2           -0.57           -0.94               0               0               0           -0.84             1.3         -0.0031               0               0              -1          -0.046               0               0      5.6e+03        2.6        1     -2.6    -
    3           -0.39            -1.5               0               0               0            -1.3            0.24         -0.0064               0               0            -1.3           0.078               0               0      5.5e+03       0.58       10        1   ++
    4           -0.51            -1.4               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.22               0               0      5.5e+03      0.022    1e+02     0.97   ++
    5           -0.52            -1.3               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.21               0               0      5.5e+03    5.2e-05    1e+03        1   ++
    6           -0.52            -1.3               0               0               0            -1.1            0.19         -0.0059               0               0            -1.2            0.21               0               0      5.5e+03    1.4e-09    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 22 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000130
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03      0.041       10        1   ++
    1      5.5e+03      0.053    1e+02     0.97   ++
    2      5.5e+03     0.0043    1e+03        1   ++
    3      5.5e+03    0.00016    1e+04        1   ++
    4      5.5e+03    2.1e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000131
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.66           0.026         -0.0058            0.55              -1             1.7            -0.8               1         -0.0024           -0.36           -0.19          -0.042           -0.24      5.5e+03        1.9        1     0.77    +
    1              -1            0.46           0.027             1.5            -1.3            0.99           -0.97            0.83          -0.008           -0.51           -0.16            -0.1           -0.65      5.1e+03       0.61       10      1.2   ++
    2           -0.98            0.66            0.38             1.9            -2.1            0.08            -1.7           -0.48         -0.0063           -0.12           0.065           -0.42            -1.8        5e+03       0.06       10     0.48    +
    3            -1.4             0.7            0.42               2            -1.5            0.18            -1.5           -0.28         -0.0061           -0.33           0.065           -0.52            -1.9      4.9e+03      0.043    1e+02      1.1   ++
    4            -1.4             0.7            0.44               2            -1.6            0.26            -1.5           -0.02         -0.0062           -0.33           0.067           -0.46            -1.9      4.9e+03     0.0032    1e+03      1.1   ++
    5            -1.4             0.7            0.44               2            -1.6            0.28            -1.5           0.037         -0.0062           -0.31           0.062           -0.45            -1.8      4.9e+03    0.00067    1e+04        1   ++
    6            -1.4             0.7            0.44               2            -1.6            0.28            -1.5           0.045         -0.0062           -0.31           0.062           -0.45            -1.8      4.9e+03    6.4e-06    1e+05        1   ++
    7            -1.4             0.7            0.44               2            -1.6            0.28            -1.5           0.045         -0.0062           -0.31           0.062           -0.45            -1.8      4.9e+03    1.8e-07    1e+05        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000132
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03        2.4       10        1   ++
    1      5.8e+03        2.4      1.5      -17    -
    2      5.6e+03       0.85      1.5     0.71    +
    3      5.5e+03       0.11       15      1.1   ++
    4      5.5e+03     0.0067  1.5e+02      1.1   ++
    5      5.5e+03    0.00029  1.5e+03        1   ++
    6      5.5e+03    2.8e-06  1.5e+03        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 18 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000133
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03        2.5       10        1   ++
    1      5.7e+03        2.5      3.3 -1.1e+04    -
    2      5.7e+03        2.5      1.7      -13    -
    3      5.3e+03        1.2       17      1.1   ++
    4      5.3e+03        1.2      1.2      -29    -
    5      5.3e+03        1.2     0.62   -0.081    -
    6      5.2e+03      0.011      6.2     0.98   ++
    7      5.2e+03     0.0076       62     0.96   ++
    8      5.2e+03     0.0018  6.2e+02      1.1   ++
    9      5.2e+03    1.2e-05  6.2e+03        1   ++
   10      5.2e+03    1.1e-09  6.2e+03        1   ++
Considering neighbor 4/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000134
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0              -1           -0.34          -0.026               0               0               0           -0.29               0               0           -0.35           -0.24          -0.019               0               0      5.9e+03      0.039       10      1.1   ++
    1            -2.1            0.81            0.76               0               0               0           -0.86               0               0           -0.88            0.18           0.015               0               0      5.6e+03      0.023    1e+02      1.1   ++
    2            -2.5             1.2             1.1               0               0               0           -0.95               0               0            -0.9            0.16          -0.097               0               0      5.5e+03     0.0038    1e+03      1.1   ++
    3            -2.5             1.2             1.2               0               0               0           -0.95               0               0            -0.9            0.16            -0.1               0               0      5.5e+03    0.00011    1e+04        1   ++
    4            -2.5             1.2             1.2               0               0               0           -0.95               0               0            -0.9            0.16            -0.1               0               0      5.5e+03      1e-07    1e+04        1   ++
Considering neighbor 5/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 18 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000135
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03      0.037       10        1   ++
    1      5.7e+03     0.0061    1e+02      1.1   ++
    2      5.7e+03    0.00019    1e+03        1   ++
    3      5.7e+03    1.9e-07    1e+03        1   ++
Considering neighbor 6/20 for current solution
Considering neighbor 7/20 for current solution
Attempt 46/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000136
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.53             0.2              -1           -0.23               1         -0.0043           -0.53           -0.13      5.5e+03        2.5       10        1   ++
    1           -0.53             0.2              -1           -0.23               1         -0.0043           -0.53           -0.13      5.5e+03        2.5      4.5   -3e+05    -
    2           -0.53             0.2              -1           -0.23               1         -0.0043           -0.53           -0.13      5.5e+03        2.5      2.2 -1.1e+02    -
    3           -0.53             0.2              -1           -0.23               1         -0.0043           -0.53           -0.13      5.5e+03        2.5      1.1     -3.7    -
    4           -0.75             1.3            -1.6            -1.2             1.1         -0.0031           -0.22           -0.49      5.1e+03       0.22       11        1   ++
    5           -0.75             1.3            -1.6            -1.2             1.1         -0.0031           -0.22           -0.49      5.1e+03       0.22      1.1     -6.5    -
    6           -0.73             2.4            -1.7            -1.4            0.48          -0.007           -0.27           -0.99        5e+03       0.27       11        1   ++
    7           -0.94             2.2            -1.6            -1.7           -0.12         -0.0061           -0.31            -1.8      4.9e+03      0.021       11     0.79    +
    8           -0.93             2.2            -1.6            -1.5          -0.069         -0.0061           -0.28            -1.8      4.9e+03    0.00089  1.1e+02        1   ++
    9           -0.92             2.2            -1.6            -1.5          -0.038         -0.0061           -0.28            -1.9      4.9e+03    4.3e-05  1.1e+03        1   ++
   10           -0.92             2.2            -1.6            -1.5          -0.038         -0.0061           -0.28            -1.9      4.9e+03    3.9e-07  1.1e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 47/100
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000137
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.53              -1           -0.32         -0.0036           -0.47      5.6e+03        2.4       10        1   ++
    1           -0.47            -1.4            -1.1         -0.0051           -0.27      5.4e+03      0.095    1e+02        1   ++
    2           -0.38            -1.5            -1.1         -0.0054           -0.23      5.4e+03      0.013    1e+03        1   ++
    3           -0.38            -1.5            -1.1         -0.0054           -0.22      5.4e+03     0.0006    1e+04        1   ++
    4           -0.38            -1.5            -1.1         -0.0054           -0.22      5.4e+03    0.00016    1e+05        1   ++
    5           -0.38            -1.5            -1.1         -0.0054           -0.22      5.4e+03      4e-06    1e+05        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000138
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.53            0.16              -1           -0.28         -0.0046           -0.57           -0.12      5.5e+03        2.5       10        1   ++
    1           -0.72             2.3            -1.5           -0.97         -0.0052           -0.15           -0.25        5e+03        1.1    1e+02     0.94   ++
    2           -0.77             2.1            -1.7            -1.1          -0.006           -0.19           -0.25        5e+03      0.043    1e+03        1   ++
    3           -0.77             2.1            -1.7            -1.1         -0.0061           -0.19           -0.25        5e+03    0.00023    1e+04        1   ++
    4           -0.77             2.1            -1.7            -1.1         -0.0061           -0.19           -0.25        5e+03    2.1e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000139
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost     lambda_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL         asc_car beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.91               0               0               0           -0.22               1         -0.0073               0               0              -1               0               0      5.9e+03        2.6       10        1   ++
    1           -0.91               0               0               0           -0.22               1         -0.0073               0               0              -1               0               0      5.9e+03        2.6      4.5 -2.8e+05    -
    2           -0.91               0               0               0           -0.22               1         -0.0073               0               0              -1               0               0      5.9e+03        2.6      2.2 -1.6e+02    -
    3           -0.91               0               0               0           -0.22               1         -0.0073               0               0              -1               0               0      5.9e+03        2.6      1.1     -7.3    -
    4           -0.91               0               0               0           -0.22               1         -0.0073               0               0              -1               0               0      5.9e+03        2.6     0.56    -0.51    -
    5            -1.2               0               0               0           -0.78               1         -0.0068               0               0           -0.85               0               0      5.7e+03      0.032      5.6     0.97   ++
    6            -1.2               0               0               0           -0.78               1         -0.0068               0               0           -0.85               0               0      5.7e+03      0.032        1     -8.7    -
    7            -1.7               0               0               0            -1.4          -0.021         -0.0027               0               0           -0.99               0               0      5.7e+03      0.086        1     0.45    +
    8            -1.4               0               0               0            -1.1           0.077         -0.0055               0               0           -0.98               0               0      5.6e+03      0.025       10        1   ++
    9            -1.4               0               0               0            -1.1            0.17         -0.0055               0               0           -0.99               0               0      5.6e+03    0.00033    1e+02        1   ++
   10            -1.4               0               0               0            -1.1            0.17         -0.0055               0               0           -0.99               0               0      5.6e+03    8.7e-07    1e+02        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 48/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000140
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.43           -0.73            0.84           -0.65              -1           -0.36            -0.1           -0.34      5.2e+03      0.041       10      1.1   ++
    1           -0.62           -0.95             1.8              -1            -2.5           -0.66            0.38            0.92      4.9e+03      0.012    1e+02      1.1   ++
    2           -0.63            -1.1             1.9            -1.1            -2.7            -0.7            0.43               1      4.9e+03    0.00079    1e+03        1   ++
    3           -0.63            -1.1             1.9            -1.1            -2.7            -0.7            0.43               1      4.9e+03    5.2e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000141
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.66           -0.78            0.62           -0.95              -1           -0.51           -0.26           -0.24      5.2e+03      0.034       10      1.1   ++
    1           -0.34           -0.96             1.8            -2.8              -1           -0.44            0.35           -0.43      4.9e+03       0.02    1e+02      1.1   ++
    2           -0.27            -1.1             1.9            -3.2            -1.1           -0.45            0.42           -0.45      4.9e+03     0.0013    1e+03        1   ++
    3           -0.27            -1.1             1.9            -3.2            -1.1           -0.45            0.42           -0.45      4.9e+03    7.3e-06    1e+04        1   ++
    4           -0.27            -1.1             1.9            -3.2            -1.1           -0.45            0.42           -0.45      4.9e+03    4.1e-10    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000142
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0              -1           -0.26          -0.026            0.23           -0.78           -0.41           -0.48           -0.34          -0.025           -0.15      5.6e+03      0.042       10        1   ++
    1            -1.2            0.36            0.18             2.1            -2.7           -0.96           -0.15           0.066           -0.17           -0.31        5e+03      0.032    1e+02     0.98   ++
    2            -1.5            0.64            0.46             1.8            -3.2            -1.1           -0.12           0.039           -0.29           -0.31        5e+03     0.0023    1e+03        1   ++
    3            -1.5             0.7            0.52             1.8            -3.2            -1.1           -0.11           0.037            -0.3           -0.29        5e+03    6.2e-05    1e+04        1   ++
    4            -1.5             0.7            0.52             1.8            -3.2            -1.1           -0.11           0.037            -0.3           -0.29        5e+03      5e-08    1e+04        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 49/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000143
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC         asc_car beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.66              -1               2               0               0               0               0               0           -0.67               0               0      6.3e+03       0.14        1     0.42    +
    1           -0.89               0             2.1               0               0               0               0               0           0.077               0               0      6.2e+03       0.29        1     0.19    +
    2            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52        1     0.43    +
    3            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52      0.5      -14    -
    4            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52     0.25     -6.5    -
    5            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52     0.12     -4.2    -
    6            -1.4          -0.053             3.1               0               0               0               0               0           -0.53               0               0        6e+03       0.52    0.062     -1.6    -
    7            -1.4          0.0095             3.1               0               0               0               0               0           -0.53               0               0      5.9e+03        1.1    0.062      0.5    +
    8            -1.4          0.0095             3.1               0               0               0               0               0           -0.53               0               0      5.9e+03        1.1    0.031    -0.15    -
    9            -1.5          -0.022             3.1               0               0               0               0               0           -0.54               0               0      5.9e+03       0.33    0.031     0.14    +
   10            -1.5          -0.022             3.1               0               0               0               0               0           -0.54               0               0      5.9e+03       0.33    0.016    -0.32    -
   11            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19     0.16     0.94   ++
   12            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19    0.078     -7.3    -
   13            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19    0.039     -5.4    -
   14            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19     0.02     -4.4    -
   15            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19   0.0098     -3.8    -
   16            -1.5         -0.0062               3               0               0               0               0               0           -0.56               0               0      5.9e+03       0.19   0.0049     -1.5    -
   17            -1.5         -0.0013               3               0               0               0               0               0           -0.56               0               0      5.9e+03     0.0088   0.0049     0.86    +
   18            -1.5         -0.0012               3               0               0               0               0               0           -0.56               0               0      5.9e+03     0.0032    0.049        1   ++
   19            -1.5         -0.0014               3               0               0               0               0               0           -0.58               0               0      5.9e+03     0.0027     0.49        1   ++
   20            -1.4         -0.0054             2.5               0               0               0               0               0           -0.54               0               0      5.9e+03      0.097     0.49     0.54    +
   21            -1.5          -0.024               2               0               0               0               0               0           -0.57               0               0      5.8e+03      0.083      4.9      1.2   ++
   22            -1.2           -0.26           -0.73               0               0               0               0               0           -0.39               0               0      5.8e+03      0.038      4.9     0.65    +
   23            -1.2           -0.26           -0.73               0               0               0               0               0           -0.39               0               0      5.8e+03      0.038      2.4 -2.5e+02    -
   24            -1.2           -0.26           -0.73               0               0               0               0               0           -0.39               0               0      5.8e+03      0.038      1.2     -3.1    -
   25           -0.48            -1.5            0.14               0               0               0               0               0            0.35               0               0      5.6e+03      0.032       12      1.3   ++
   26           -0.35            -1.6            0.53               0               0               0               0               0            0.24               0               0      5.6e+03     0.0079       12     0.84    +
   27            -0.4            -1.6            0.46               0               0               0               0               0             0.2               0               0      5.5e+03    0.00061  1.2e+02      1.1   ++
   28           -0.41            -1.6            0.45               0               0               0               0               0             0.2               0               0      5.5e+03    6.9e-06  1.2e+03        1   ++
   29           -0.41            -1.6            0.45               0               0               0               0               0             0.2               0               0      5.5e+03    3.9e-10  1.2e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 50/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000144
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.39           -0.76               1            -0.6               0               0               0               0               0           -0.37          -0.072           -0.43               0               0      5.4e+03      0.044       10      1.1   ++
    1           -0.37           -0.95             1.6              -1               0               0               0               0               0           -0.31            0.41            -1.3               0               0      5.2e+03      0.011    1e+02      1.1   ++
    2           -0.39            -1.1             1.7            -1.1               0               0               0               0               0           -0.32            0.42            -1.5               0               0      5.2e+03    0.00068    1e+03        1   ++
    3           -0.39            -1.1             1.7            -1.1               0               0               0               0               0           -0.32            0.42            -1.5               0               0      5.2e+03    4.2e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 51/100
Considering neighbor 0/20 for current solution
Attempt 52/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000145
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.92          -0.039          -0.011              -1           -0.64         -0.0019           -0.46            -0.2          -0.047      5.6e+03        2.5       10        1   ++
    1           -0.89            0.82             0.5            -2.9              -2         -0.0045           -0.16            0.17           -0.14      5.2e+03        0.4    1e+02      1.1   ++
    2            -1.1             1.1            0.91            -3.2            -2.4         -0.0053           -0.18            0.17           -0.23      5.1e+03      0.075    1e+03      1.1   ++
    3            -1.1             1.2            0.95            -3.2            -2.4         -0.0055           -0.18            0.17           -0.23      5.1e+03     0.0012    1e+04        1   ++
    4            -1.1             1.2            0.95            -3.2            -2.4         -0.0055           -0.18            0.17           -0.22      5.1e+03    0.00012    1e+05        1   ++
    5            -1.1             1.2            0.95            -3.2            -2.4         -0.0055           -0.18            0.17           -0.22      5.1e+03      1e-07    1e+05        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 53/100
Considering neighbor 0/20 for current solution
Attempt 54/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000146
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.39           -0.63           -0.87               2           -0.81           -0.44           -0.21      5.9e+03       0.13        1     0.58    +
    1           -0.41            -1.2           -0.47             1.8            -1.8           -0.43            0.18      5.3e+03      0.023       10     0.96   ++
    2           -0.41            -1.2           -0.47             1.8            -1.8           -0.43            0.18      5.3e+03      0.023        5 -2.4e+03    -
    3           -0.41            -1.2           -0.47             1.8            -1.8           -0.43            0.18      5.3e+03      0.023      2.5      -15    -
    4           -0.41            -1.2           -0.47             1.8            -1.8           -0.43            0.18      5.3e+03      0.023      1.2    -0.45    -
    5           -0.34            -1.3            -1.1            0.52            -2.1           -0.49            0.27      5.2e+03      0.026      1.2     0.89    +
    6            0.33            -1.2            -1.6            0.41            -2.3           -0.27            0.33      5.1e+03     0.0062       12        1   ++
    7            0.35            -1.3            -1.7            0.41            -2.4           -0.25            0.33      5.1e+03    7.8e-05  1.2e+02        1   ++
    8            0.35            -1.3            -1.7            0.41            -2.4           -0.25            0.33      5.1e+03    4.8e-08  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 55/100
Considering neighbor 0/20 for current solution
Attempt 56/100
Considering neighbor 0/20 for current solution
Attempt 57/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000147
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_wi beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.91            0.23               0               0               0           -0.42          -0.008               0               0              -1            -0.2               0               0      5.7e+03        2.5       10        1   ++
    1            -1.7             2.2               0               0               0           -0.97         -0.0062               0               0           -0.97          0.0081               0               0      5.3e+03        1.1    1e+02        1   ++
    2            -1.9             2.2               0               0               0              -1         -0.0064               0               0              -1          -0.049               0               0      5.3e+03      0.062    1e+03        1   ++
    3            -1.9             2.2               0               0               0              -1         -0.0064               0               0              -1          -0.042               0               0      5.3e+03    0.00046    1e+04        1   ++
    4            -1.9             2.2               0               0               0              -1         -0.0064               0               0              -1          -0.042               0               0      5.3e+03    2.6e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000148
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL         asc_car beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.91               0               0               0            -0.3         -0.0074               0               0              -1               0               0      5.9e+03        2.6       10        1   ++
    1            -1.4               0               0               0              -2         -0.0057               0               0           -0.78               0               0      5.6e+03       0.22    1e+02     0.99   ++
    2            -1.4               0               0               0            -2.2         -0.0055               0               0           -0.87               0               0      5.6e+03     0.0089    1e+03        1   ++
    3            -1.4               0               0               0            -2.2         -0.0055               0               0           -0.88               0               0      5.6e+03    1.2e-05    1e+04        1   ++
    4            -1.4               0               0               0            -2.2         -0.0055               0               0           -0.88               0               0      5.6e+03    4.4e-11    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000149
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.42           -0.69            0.12         -0.0031              -1           -0.82          0.0011           -0.24          -0.033           -0.13          -0.034      5.3e+03        2.4       10      1.1   ++
    1           0.027            -1.2            0.73            0.33            -1.6              -1         -0.0044           -0.36            0.22           0.055           -0.15      5.1e+03       0.62    1e+02      1.1   ++
    2          -0.081            -1.2            0.94            0.52            -1.7              -1         -0.0058           -0.39            0.24           0.055           -0.18      5.1e+03      0.052    1e+03      1.1   ++
    3            -0.1            -1.2            0.97            0.55            -1.7              -1         -0.0059            -0.4            0.25           0.055           -0.18      5.1e+03    0.00056    1e+04        1   ++
    4            -0.1            -1.2            0.97            0.55            -1.7              -1         -0.0059            -0.4            0.25           0.055           -0.18      5.1e+03    2.6e-07    1e+04        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 58/100
Considering neighbor 0/20 for current solution
Attempt 59/100
Considering neighbor 0/20 for current solution
Attempt 60/100
Considering neighbor 0/20 for current solution
Attempt 61/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000150
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.72            0.65           -0.95               2               0               0               0         -0.0015               0               0           -0.41            -0.3               0               0        6e+03        2.3        1     0.54    +
    1           -0.93             1.6           -0.38             1.9               0               0               0         -0.0073               0               0           -0.15           -0.73               0               0      5.5e+03       0.17        1     0.86    +
    2            -1.2             1.8           -0.83            0.89               0               0               0         -0.0047               0               0           -0.24           -0.85               0               0      5.3e+03      0.026       10        1   ++
    3           -0.51             1.8            -1.7           -0.05               0               0               0         -0.0059               0               0            0.19            -1.3               0               0      5.2e+03       0.12       10     0.49    +
    4           -0.51             1.9            -1.7            0.32               0               0               0          -0.006               0               0            0.18            -1.4               0               0      5.2e+03      0.015    1e+02        1   ++
    5            -0.6             1.9            -1.6            0.34               0               0               0          -0.006               0               0            0.12            -1.3               0               0      5.2e+03    0.00078    1e+03     0.98   ++
    6            -0.6             1.9            -1.6            0.34               0               0               0          -0.006               0               0            0.12            -1.3               0               0      5.2e+03    8.4e-07    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000151
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC         asc_car beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.65           -0.65               0               0               0         -0.0026               0               0            -0.4               0               0      5.7e+03        2.5       10      1.1   ++
    1           -0.41            -1.1               0               0               0         -0.0047               0               0          -0.064               0               0      5.6e+03       0.22    1e+02      1.1   ++
    2           -0.39            -1.1               0               0               0         -0.0052               0               0          -0.062               0               0      5.6e+03     0.0049    1e+03        1   ++
    3           -0.39            -1.1               0               0               0         -0.0052               0               0          -0.062               0               0      5.6e+03    2.4e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000152
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0        6e+03       0.12        1     0.57    +
    1        6e+03       0.12      0.5    -0.17    -
    2      5.6e+03      0.022        5     0.91   ++
    3      5.6e+03      0.022      2.5      -12    -
    4      5.6e+03      0.022      1.2    -0.22    -
    5      5.4e+03      0.037      1.2     0.85    +
    6      5.3e+03     0.0087      1.2     0.89    +
    7      5.3e+03    0.00037       12     0.99   ++
    8      5.3e+03    2.9e-06       12        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000153
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.69            0.53              -1             1.8               0               0               0               0               0           -0.57           -0.28               0               0        6e+03        0.1        1      0.6    +
    1            -1.1             1.5           -0.78             1.5               0               0               0               0               0            0.15           -0.67               0               0      5.4e+03      0.034       10     0.95   ++
    2            -1.1             1.5           -0.78             1.5               0               0               0               0               0            0.15           -0.67               0               0      5.4e+03      0.034      1.3     -3.9    -
    3           -0.93             2.1            -1.8            0.15               0               0               0               0               0            0.33            -1.1               0               0      5.2e+03      0.017      1.3     0.82    +
    4           -0.84             1.8            -1.6            0.31               0               0               0               0               0            0.25            -1.3               0               0      5.2e+03     0.0014       13        1   ++
    5           -0.87             1.8            -1.6            0.34               0               0               0               0               0            0.24            -1.4               0               0      5.2e+03    3.9e-05  1.3e+02        1   ++
    6           -0.87             1.8            -1.6            0.34               0               0               0               0               0            0.24            -1.4               0               0      5.2e+03    2.2e-08  1.3e+02        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000154
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03        2.6       10        1   ++
    1      5.8e+03       0.11    1e+02        1   ++
    2      5.8e+03     0.0017    1e+03        1   ++
    3      5.8e+03    1.9e-07    1e+03        1   ++
Considering neighbor 4/20 for current solution
Considering neighbor 5/20 for current solution
Attempt 62/100
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000155
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.72              -1               2           -0.85        -0.00082           -0.46      5.9e+03        1.6        1     0.56    +
    1              -1               0             2.1            -1.8         -0.0076           -0.84      5.8e+03       0.42        1     0.24    +
    2              -1               0             2.1            -1.8         -0.0076           -0.84      5.8e+03       0.42      0.5    -0.05    -
    3            -1.4          -0.039             2.3            -1.3         -0.0067            -1.1      5.6e+03       0.13        5     0.95   ++
    4            -1.4          -0.039             2.3            -1.3         -0.0067            -1.1      5.6e+03       0.13      2.5     -3.9    -
    5            -1.4          -0.039             2.3            -1.3         -0.0067            -1.1      5.6e+03       0.13      1.2    -0.59    -
    6            -1.4           -0.26               1            -0.7         -0.0003           -0.44      5.6e+03       0.31      1.2     0.38    +
    7           -0.76           -0.82               1           -0.99         -0.0051           -0.46      5.4e+03      0.041       12      1.1   ++
    8           -0.25            -1.7           0.064              -1         -0.0054           -0.14      5.4e+03      0.068       12     0.53    +
    9            -0.3            -1.6            0.37              -1         -0.0053           -0.18      5.4e+03     0.0066  1.2e+02        1   ++
   10           -0.37            -1.5             0.4              -1         -0.0053           -0.22      5.4e+03    0.00033  1.2e+03        1   ++
   11           -0.37            -1.5             0.4              -1         -0.0053           -0.22      5.4e+03    1.5e-06  1.2e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000156
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.73           -0.67            -0.9         -0.0034           -0.57      5.4e+03        2.1       10      1.1   ++
    1           -0.49            -1.2            -1.1          -0.005           -0.29      5.3e+03       0.22    1e+02      1.1   ++
    2           -0.45            -1.3            -1.1         -0.0054           -0.26      5.3e+03     0.0055    1e+03        1   ++
    3           -0.45            -1.3            -1.1         -0.0054           -0.26      5.3e+03     0.0004    1e+04        1   ++
    4           -0.45            -1.3            -1.1         -0.0054           -0.26      5.3e+03      1e-05    1e+05        1   ++
    5           -0.45            -1.3            -1.1         -0.0054           -0.26      5.3e+03    7.1e-07    1e+05        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000157
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.67             0.5              -1             1.7           -0.91         -0.0026           -0.46           -0.23      5.5e+03        1.9        1     0.77    +
    1           -0.94             1.5            -1.2               1              -1         -0.0053            -0.5           -0.36      5.1e+03       0.39       10      1.2   ++
    2           -0.32               2            -2.3         0.00089            -1.1         -0.0061           0.085           -0.36        5e+03      0.076       10     0.29    +
    3           -0.73             2.1            -1.7            0.21            -1.1         -0.0061           -0.17           -0.34        5e+03      0.003    1e+02      1.1   ++
    4           -0.73             2.1            -1.7            0.38            -1.1         -0.0062           -0.18            -0.3        5e+03     0.0038    1e+03     0.99   ++
    5           -0.74             2.1            -1.7            0.39            -1.1         -0.0062           -0.19           -0.29        5e+03    1.1e-05    1e+04        1   ++
    6           -0.74             2.1            -1.7            0.39            -1.1         -0.0062           -0.19           -0.29        5e+03    2.9e-07    1e+04        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000158
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.73            0.39              -1             1.6           -0.73           -0.45           -0.21      5.5e+03      0.049        1     0.83    +
    1            -1.1             1.4            -1.3             0.9            -1.1            -0.2           -0.35      5.1e+03      0.022       10      1.1   ++
    2           -0.87               2            -1.9            0.26            -1.1           0.037           -0.36        5e+03      0.012       10     0.82    +
    3              -1               2            -1.7            0.36            -1.1          -0.061           -0.31        5e+03     0.0012    1e+02        1   ++
    4              -1               2            -1.7            0.38            -1.1          -0.064           -0.31        5e+03    3.1e-05    1e+03        1   ++
    5              -1               2            -1.7            0.38            -1.1          -0.064           -0.31        5e+03    3.6e-09    1e+03        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000159
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost     lambda_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.68              -1             1.9           -0.84               1         -0.0011           -0.46      5.8e+03        1.7        1     0.67    +
    1           -0.69            -1.8            0.85            -1.5            0.34         0.00068           -0.23      5.5e+03       0.27       10     0.92   ++
    2           -0.28            -1.5            0.63            -1.1            0.45          -0.006           -0.23      5.4e+03       0.05    1e+02        1   ++
    3           -0.29            -1.6            0.45            -1.1            0.61         -0.0054           -0.21      5.3e+03     0.0017    1e+03     0.93   ++
    4           -0.31            -1.6            0.46            -1.1            0.58         -0.0054           -0.22      5.3e+03    4.7e-05    1e+04        1   ++
    5           -0.31            -1.6            0.46            -1.1            0.58         -0.0054           -0.22      5.3e+03    5.3e-07    1e+04        1   ++
Considering neighbor 4/20 for current solution
Considering neighbor 5/20 for current solution
Attempt 63/100
Considering neighbor 0/20 for current solution
Attempt 64/100
Considering neighbor 0/20 for current solution
Attempt 65/100
Considering neighbor 0/20 for current solution
Attempt 66/100
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000160
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.52           -0.74              -1           -0.94           -0.46           -0.16      5.4e+03      0.044       10        1   ++
    1            0.21            -1.2            -2.9            -2.1           -0.24            0.26      5.1e+03      0.016    1e+02      1.1   ++
    2            0.31            -1.3            -3.3            -2.4           -0.27            0.33      5.1e+03    0.00089    1e+03        1   ++
    3            0.31            -1.3            -3.3            -2.4           -0.27            0.33      5.1e+03    2.8e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 67/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000161
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0              -1           -0.24          -0.026            0.25           -0.81           -0.29               1           -0.52           -0.36          -0.027           -0.17      5.6e+03       0.05       10        1   ++
    1              -1           -0.24          -0.026            0.25           -0.81           -0.29               1           -0.52           -0.36          -0.027           -0.17      5.6e+03       0.05      4.5 -1.9e+05    -
    2              -1           -0.24          -0.026            0.25           -0.81           -0.29               1           -0.52           -0.36          -0.027           -0.17      5.6e+03       0.05      2.2      -70    -
    3              -1           -0.24          -0.026            0.25           -0.81           -0.29               1           -0.52           -0.36          -0.027           -0.17      5.6e+03       0.05      1.1     -1.9    -
    4            -1.4            0.42         -0.0089             1.4            -1.6            -1.2               1           -0.34           -0.13          -0.083           -0.49      5.1e+03      0.041       11     0.99   ++
    5            -1.4            0.42         -0.0089             1.4            -1.6            -1.2               1           -0.34           -0.13          -0.083           -0.49      5.1e+03      0.041     0.95     -2.4    -
    6            -1.7            0.68           0.098             2.1            -2.6            -1.4            0.42           -0.31           0.095           -0.17           -0.91      4.9e+03      0.015      9.5      1.1   ++
    7            -1.7             0.7            0.54             1.9            -2.9            -1.5           0.079           -0.25           0.079           -0.38            -1.7      4.9e+03     0.0042       95        1   ++
    8            -1.7             0.7             0.5             1.9            -2.9            -1.5           0.088           -0.23           0.077           -0.44            -1.8      4.9e+03      8e-05  9.5e+02        1   ++
    9            -1.7             0.7             0.5             1.9            -2.9            -1.5           0.088           -0.23           0.077           -0.44            -1.8      4.9e+03    3.5e-07  9.5e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 22 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000162
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03      0.041       10        1   ++
    1      5.5e+03      0.053    1e+02     0.97   ++
    2      5.5e+03     0.0043    1e+03        1   ++
    3      5.5e+03    0.00016    1e+04        1   ++
    4      5.5e+03    2.1e-07    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 19 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000163
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03        2.9       10        1   ++
    1      5.7e+03       0.32    1e+02      1.1   ++
    2      5.7e+03      0.014    1e+03        1   ++
    3      5.7e+03    2.1e-05    1e+04        1   ++
    4      5.7e+03    4.6e-11    1e+04        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000164
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.9e+03       0.04       10      1.1   ++
    1      5.9e+03       0.04        5 -1.1e+07    -
    2      5.9e+03       0.04      2.5 -1.8e+02    -
    3      5.9e+03       0.04      1.2    0.051    -
    4      5.4e+03      0.043       12      1.1   ++
    5      5.4e+03      0.043      2.7 -3.1e+03    -
    6      5.4e+03      0.043      1.4      -17    -
    7      5.3e+03      0.057      1.4     0.48    +
    8      5.2e+03     0.0044       14     0.91   ++
    9      5.2e+03     0.0019       14     0.89    +
   10      5.2e+03    3.7e-05  1.4e+02        1   ++
   11      5.2e+03      5e-08  1.4e+02        1   ++
Considering neighbor 3/20 for current solution
Considering neighbor 4/20 for current solution
Attempt 68/100
Considering neighbor 0/20 for current solution
Attempt 69/100
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000165
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.69           -0.13          -0.017            0.23              -1            -0.4           -0.33           -0.25           -0.02           -0.13      5.5e+03      0.051       10        1   ++
    1            -1.2            0.39             0.2             2.2            -1.6           -0.98          -0.074           0.017            -0.2           -0.21        5e+03      0.027    1e+02     0.96   ++
    2            -1.5            0.66            0.43             1.9            -1.7            -1.1          -0.076          0.0084            -0.3           -0.24        5e+03     0.0018    1e+03        1   ++
    3            -1.5            0.71            0.48             1.9            -1.7            -1.1          -0.072          0.0068            -0.3           -0.23        5e+03    4.3e-05    1e+04        1   ++
    4            -1.5            0.71            0.48             1.9            -1.7            -1.1          -0.072          0.0068            -0.3           -0.23        5e+03    2.4e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000166
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0              -1            0.41           0.027           -0.64            -0.9         -0.0035           -0.61           0.012           -0.09      5.4e+03        2.2       10      1.1   ++
    1            -1.1            0.93            0.76            -1.2            -1.1          -0.005           -0.36             0.1           -0.29      5.2e+03       0.36    1e+02      1.1   ++
    2            -1.3             1.1            0.95            -1.2            -1.1         -0.0055           -0.35             0.1           -0.28      5.2e+03      0.032    1e+03        1   ++
    3            -1.3             1.2            0.98            -1.2            -1.1         -0.0055           -0.35            0.11           -0.25      5.2e+03    0.00096    1e+04        1   ++
    4            -1.3             1.2            0.98            -1.2            -1.1         -0.0055           -0.35            0.11           -0.25      5.2e+03    3.7e-06    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000167
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.88            0.66           -0.79              -1           -0.36           -0.25      5.2e+03      0.047       10      1.1   ++
    1            -1.2             1.9            -1.1            -1.1           -0.28           -0.28      5.1e+03      0.014    1e+02      1.1   ++
    2            -1.3               2            -1.2            -1.1           -0.25            -0.3      5.1e+03     0.0007    1e+03        1   ++
    3            -1.3               2            -1.2            -1.1           -0.25            -0.3      5.1e+03    2.4e-06    1e+03        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000168
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.61           0.037          -0.014              -1             1.5           -0.44           -0.45           -0.34           -0.03      5.7e+03       0.08        1     0.84    +
    1            -1.1               1            0.12            -1.8            0.54            -1.2          -0.022           0.043           -0.23      5.3e+03      0.012       10     0.95   ++
    2            -1.4             1.1             1.1            -1.5            0.43            -1.1          -0.081          -0.081           -0.67      5.3e+03     0.0015    1e+02     0.98   ++
    3            -1.4             1.1            0.95            -1.5            0.38            -1.1          -0.081          -0.077           -0.73      5.3e+03    8.8e-05    1e+03        1   ++
    4            -1.4             1.1            0.95            -1.5            0.38            -1.1          -0.081          -0.077           -0.73      5.3e+03    1.1e-07    1e+03        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000169
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.65           0.046         -0.0052           -0.98             1.8              -1         -0.0022           -0.35           -0.18          -0.042      5.6e+03        1.6        1     0.76    +
    1           -0.98               1           0.075            -1.7            0.81            -1.1         -0.0048           -0.34            0.15           -0.11      5.2e+03       0.56       10        1   ++
    2              -1             1.1             1.1            -1.7            0.53            -1.1         -0.0055           -0.13           0.061           -0.41      5.2e+03      0.029    1e+02     0.99   ++
    3            -1.1             1.2            0.96            -1.6             0.5            -1.1         -0.0055           -0.18           0.071            -0.3      5.2e+03     0.0026    1e+03        1   ++
    4            -1.1             1.2            0.96            -1.6             0.5            -1.1         -0.0055           -0.18           0.071            -0.3      5.2e+03    5.5e-06    1e+03        1   ++
Considering neighbor 4/20 for current solution
Considering neighbor 5/20 for current solution
Attempt 70/100
Biogeme parameters read from biogeme.toml.
Model with 9 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000170
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.55           -0.88            -0.9             1.8              -1               1           0.006           -0.27          -0.004      5.6e+03        2.2        1     0.78    +
    1            0.45            -1.1            -1.1             1.3           -0.97            0.49         -0.0078           -0.68            0.34      5.3e+03       0.47       10      1.1   ++
    2            0.45            -1.1            -1.1             1.3           -0.97            0.49         -0.0078           -0.68            0.34      5.3e+03       0.47        1     -2.4    -
    3            0.52            -1.1            -1.9            0.27            -1.3            0.69          -0.004           -0.54            0.46      5.2e+03      0.079        1     0.68    +
    4            0.57            -1.3            -1.6            0.36            -1.1            0.62         -0.0058           -0.51            0.31      5.2e+03      0.015       10     0.99   ++
    5            0.56            -1.3            -1.6            0.39            -1.1            0.56         -0.0058           -0.53            0.32      5.2e+03     0.0001    1e+02     0.98   ++
    6            0.56            -1.3            -1.6            0.39            -1.1            0.56         -0.0058           -0.53            0.32      5.2e+03    1.3e-06    1e+02        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000171
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.68           -0.11          -0.016            0.24              -1           -0.29               1           -0.34           -0.26          -0.021           -0.14      5.5e+03      0.055       10        1   ++
    1           -0.68           -0.11          -0.016            0.24              -1           -0.29               1           -0.34           -0.26          -0.021           -0.14      5.5e+03      0.055      4.5 -2.2e+05    -
    2           -0.68           -0.11          -0.016            0.24              -1           -0.29               1           -0.34           -0.26          -0.021           -0.14      5.5e+03      0.055      2.2      -88    -
    3           -0.68           -0.11          -0.016            0.24              -1           -0.29               1           -0.34           -0.26          -0.021           -0.14      5.5e+03      0.055      1.1     -2.8    -
    4              -1            0.49          0.0064             1.4            -1.6            -1.2               1          -0.036           -0.14          -0.077           -0.49      5.1e+03      0.018       11        1   ++
    5              -1            0.49          0.0064             1.4            -1.6            -1.2               1          -0.036           -0.14          -0.077           -0.49      5.1e+03      0.018     0.99     -4.4    -
    6            -1.5            0.62            0.15             2.4            -1.7            -1.7            0.25          -0.099          -0.032           -0.22            -1.1      4.9e+03      0.013      9.9        1   ++
    7            -1.7            0.71            0.47               2            -1.6            -1.5           0.016           -0.19           0.046           -0.41            -1.8      4.9e+03     0.0019       99        1   ++
    8            -1.7            0.71            0.45               2            -1.6            -1.5          -0.035           -0.18           0.044           -0.45            -1.8      4.9e+03    9.4e-05  9.9e+02        1   ++
    9            -1.7            0.71            0.45               2            -1.6            -1.5          -0.035           -0.18           0.044           -0.45            -1.8      4.9e+03    9.2e-08  9.9e+02        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000172
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.4e+03      0.045       10      1.1   ++
    1      5.3e+03      0.012    1e+02      1.1   ++
    2      5.3e+03     0.0009    1e+03        1   ++
    3      5.3e+03    7.2e-06    1e+04        1   ++
    4      5.3e+03    6.1e-10    1e+04        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 71/100
Biogeme parameters read from biogeme.toml.
Model with 4 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000173
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.71              -1           -0.28           -0.32      5.6e+03      0.042       10        1   ++
    1           -0.65            -1.5              -1            -0.1      5.4e+03     0.0059    1e+02        1   ++
    2           -0.63            -1.5            -1.1           -0.11      5.4e+03    9.8e-05    1e+03        1   ++
    3           -0.63            -1.5            -1.1           -0.11      5.4e+03    3.9e-08    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000174
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost       b_headway         asc_car     Function    Relgrad   Radius      Rho
    0           -0.93              -1           -0.55         -0.0031           -0.75      5.6e+03        2.4       10        1   ++
    1           -0.42            -2.6            -1.1         -0.0064           -0.35      5.4e+03       0.15    1e+02        1   ++
    2           -0.39            -2.9              -1         -0.0054           -0.23      5.4e+03      0.014    1e+03        1   ++
    3           -0.39            -2.9              -1         -0.0054           -0.24      5.4e+03     0.0033    1e+04        1   ++
    4           -0.39            -2.9              -1         -0.0053           -0.23      5.4e+03    0.00019    1e+05        1   ++
    5           -0.39            -2.9              -1         -0.0053           -0.23      5.4e+03    7.9e-05    1e+06        1   ++
    6           -0.39            -2.9              -1         -0.0053           -0.23      5.4e+03    1.4e-05    1e+07        1   ++
    7           -0.39            -2.9              -1         -0.0053           -0.23      5.4e+03    1.4e-06    1e+07        1   ++
Considering neighbor 1/20 for current solution
Considering neighbor 2/20 for current solution
Attempt 72/100
Considering neighbor 0/20 for current solution
Attempt 73/100
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000175
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0              -1            0.26           0.013            -0.7           -0.95           -0.37           -0.17          -0.092      5.4e+03      0.039       10      1.1   ++
    1            -1.5            0.89            0.71              -1              -1           -0.29          -0.032           -0.57      5.3e+03     0.0099    1e+02      1.1   ++
    2            -1.7             1.1            0.93              -1            -1.1           -0.28          -0.038           -0.65      5.3e+03     0.0011    1e+03      1.1   ++
    3            -1.7             1.2            0.96              -1            -1.1           -0.28          -0.038           -0.65      5.3e+03    1.3e-05    1e+04        1   ++
    4            -1.7             1.2            0.96              -1            -1.1           -0.28          -0.038           -0.65      5.3e+03      2e-09    1e+04        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 74/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000176
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0           -0.37           -0.68              -1           -0.67          0.0024           -0.21           0.028      5.4e+03        2.7       10      1.1   ++
    1            0.56            -1.3            -1.6              -2         -0.0043           -0.26            0.26      5.1e+03        0.4    1e+02      1.1   ++
    2            0.66            -1.3            -1.7            -2.3         -0.0056           -0.32            0.28      5.1e+03      0.017    1e+03        1   ++
    3            0.66            -1.3            -1.7            -2.3         -0.0057           -0.32            0.28      5.1e+03      3e-05    1e+04        1   ++
    4            0.66            -1.3            -1.7            -2.3         -0.0057           -0.32            0.28      5.1e+03    1.5e-08    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000177
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time       lambda_tt          b_cost       b_headway     asc_car_ref asc_car_diff_ma     Function    Relgrad   Radius      Rho
    0            -0.5           -0.77           -0.86             1.7              -1          0.0035           -0.28           -0.05      5.4e+03        2.1        1     0.87    +
    1            0.27            -1.3            -1.6            0.68            -1.2         -0.0017           -0.54            0.39      5.1e+03       0.41       10     0.92   ++
    2            0.69            -1.3            -1.7            0.44            -1.1         -0.0059            -0.4            0.32      5.1e+03      0.022    1e+02     0.97   ++
    3            0.65            -1.3            -1.7            0.45            -1.1         -0.0058            -0.4             0.3      5.1e+03    2.5e-05    1e+03        1   ++
    4            0.65            -1.3            -1.7            0.45            -1.1         -0.0058            -0.4             0.3      5.1e+03    4.8e-07    1e+03        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000178
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC         asc_car beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.52              -1               0               0               0         -0.0026               0               0           -0.34               0               0      5.7e+03        2.5       10        1   ++
    1           -0.18            -1.5               0               0               0         -0.0048               0               0             0.1               0               0      5.6e+03       0.13    1e+02        1   ++
    2           -0.17            -1.6               0               0               0         -0.0053               0               0           0.091               0               0      5.6e+03     0.0022    1e+03        1   ++
    3           -0.17            -1.6               0               0               0         -0.0053               0               0           0.091               0               0      5.6e+03      5e-07    1e+03        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 75/100
Considering neighbor 0/20 for current solution
Attempt 76/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000179
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.53          -0.053         -0.0067            0.32              -1           -0.41               1          -0.004           -0.39           -0.22          -0.028           -0.15      5.4e+03        2.4       10        1   ++
    1           -0.53          -0.053         -0.0067            0.32              -1           -0.41               1          -0.004           -0.39           -0.22          -0.028           -0.15      5.4e+03        2.4      1.8      -24    -
    2           -0.97            0.41            0.11             2.2            -1.6           -0.96             0.7          -0.004           -0.11           0.036           -0.15           -0.86        5e+03        1.1       18        1   ++
    3           -0.97            0.41            0.11             2.2            -1.6           -0.96             0.7          -0.004           -0.11           0.036           -0.15           -0.86        5e+03        1.1      1.1      -13    -
    4            -1.2            0.68            0.16               2            -1.7            -1.7           -0.36         -0.0061           -0.26           -0.04           -0.25            -1.2        5e+03       0.13      1.1     0.26    +
    5            -1.4             0.7             0.4             2.1            -1.6            -1.5           -0.24         -0.0061           -0.31           0.049           -0.45            -1.7      4.9e+03     0.0045       11      1.1   ++
    6            -1.4            0.71            0.42             2.1            -1.6            -1.5          -0.054         -0.0061           -0.32           0.048           -0.46            -1.8      4.9e+03     0.0019  1.1e+02      1.1   ++
    7            -1.4            0.71            0.42             2.1            -1.6            -1.5          -0.034         -0.0061           -0.31           0.045           -0.45            -1.8      4.9e+03    6.4e-05  1.1e+03        1   ++
    8            -1.4            0.71            0.42             2.1            -1.6            -1.5          -0.034         -0.0061           -0.31           0.045           -0.45            -1.8      4.9e+03    3.2e-07  1.1e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 77/100
Biogeme parameters read from biogeme.toml.
Model with 5 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000180
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.68              -1             1.9           -0.64           -0.59        6e+03       0.11        1     0.59    +
    1           -0.92           -0.75             1.6            -1.6          -0.024      5.4e+03      0.031       10     0.96   ++
    2           -0.92           -0.75             1.6            -1.6          -0.024      5.4e+03      0.031      1.2     -1.7    -
    3           -0.68            -1.8            0.39            -2.3            0.03      5.3e+03       0.04      1.2     0.88    +
    4           -0.48            -1.7            0.47            -2.3           0.054      5.2e+03     0.0029       12     0.95   ++
    5            -0.5            -1.7            0.48            -2.4           0.057      5.2e+03    2.1e-05  1.2e+02        1   ++
    6            -0.5            -1.7            0.48            -2.4           0.057      5.2e+03    1.2e-09  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
*** New pareto solution:
asc:no_seg;train_cost_catalog:sqrt;train_headway_catalog:without_headway;train_tt_catalog:boxcox [10501.31230191711, np.float64(10535.41210642354), 5]
Attempt 78/100
Considering neighbor 0/20 for current solution
Attempt 79/100
Considering neighbor 0/20 for current solution
Attempt 80/100
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000181
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03        3.1        1     0.67    +
    1      5.3e+03      0.095       10     0.99   ++
    2      5.3e+03      0.095        5 -1.4e+03    -
    3      5.3e+03      0.095      2.5      -13    -
    4      5.3e+03      0.095      1.2    -0.49    -
    5      5.2e+03      0.096      1.2     0.86    +
    6      5.1e+03      0.015      1.2     0.87    +
    7      5.1e+03     0.0033       12     0.95   ++
    8      5.1e+03    2.4e-05  1.2e+02        1   ++
    9      5.1e+03      3e-08  1.2e+02        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 81/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000182
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC         asc_car beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0            -0.9              -1               0               0               0         -0.0019               0               0           -0.56               0               0      5.7e+03        2.6       10        1   ++
    1           -0.24            -2.8               0               0               0         -0.0046               0               0           0.076               0               0      5.5e+03       0.14    1e+02        1   ++
    2           -0.18              -3               0               0               0         -0.0052               0               0           0.083               0               0      5.5e+03     0.0033    1e+03        1   ++
    3           -0.18              -3               0               0               0         -0.0052               0               0           0.083               0               0      5.5e+03    1.9e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 22 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000183
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03      0.039       10        1   ++
    1      5.6e+03     0.0083    1e+02      1.1   ++
    2      5.6e+03    0.00067    1e+03        1   ++
    3      5.6e+03    5.4e-06    1e+03        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000184
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC         asc_car beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0              -1              -1               0               0               0               0               0          -0.079               0               0      5.7e+03      0.036       10      1.1   ++
    1           -0.53            -2.7               0               0               0               0               0            0.14               0               0      5.6e+03      0.012    1e+02      1.1   ++
    2           -0.42              -3               0               0               0               0               0            0.19               0               0      5.6e+03    0.00049    1e+03        1   ++
    3           -0.42              -3               0               0               0               0               0            0.19               0               0      5.6e+03    6.5e-07    1e+03        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 82/100
Considering neighbor 0/20 for current solution
Attempt 83/100
Biogeme parameters read from biogeme.toml.
Model with 14 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000185
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_on asc_car_diff_se beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0              -1           0.066          -0.017              -1               0               0               0               0               0           -0.39           -0.27          -0.046               0               0      5.7e+03      0.041       10        1   ++
    1           -0.97             0.8            0.62            -2.8               0               0               0               0               0            0.19          -0.051           -0.68               0               0      5.5e+03      0.014    1e+02      1.1   ++
    2            -1.2             1.1            0.85              -3               0               0               0               0               0            0.22          -0.075           -0.76               0               0      5.5e+03    0.00099    1e+03      1.1   ++
    3            -1.2             1.1            0.88              -3               0               0               0               0               0            0.22          -0.076           -0.77               0               0      5.5e+03    1.6e-05    1e+04        1   ++
    4            -1.2             1.1            0.88              -3               0               0               0               0               0            0.22          -0.076           -0.77               0               0      5.5e+03    4.3e-09    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000186
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0              -1          -0.098          -0.023            -0.9           -0.46           -0.47           -0.33          -0.035      5.7e+03       0.05       10        1   ++
    1            -1.1            0.79            0.64            -2.9            -2.1          -0.076             0.2          -0.041      5.2e+03       0.02    1e+02        1   ++
    2            -1.3             1.1            0.91            -3.2            -2.4          -0.072            0.17           -0.21      5.2e+03     0.0017    1e+03      1.1   ++
    3            -1.4             1.1            0.95            -3.2            -2.4           -0.07            0.16           -0.23      5.2e+03    2.6e-05    1e+04        1   ++
    4            -1.4             1.1            0.95            -3.2            -2.4           -0.07            0.16           -0.23      5.2e+03      1e-08    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000187
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03        2.5       10        1   ++
    1      5.2e+03       0.86    1e+02        1   ++
    2      5.2e+03      0.085    1e+03      1.1   ++
    3      5.2e+03      0.002    1e+04        1   ++
    4      5.2e+03    1.4e-06    1e+04        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 6 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000188
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0              -1          -0.065              -1           -0.72          -0.048           -0.46      5.6e+03      0.042       10      1.1   ++
    1            -1.2             2.4            -2.5            -2.2           -0.17            0.87        5e+03      0.039    1e+02     0.94   ++
    2            -1.1             2.1              -3            -2.7           -0.16             1.1        5e+03     0.0016    1e+03        1   ++
    3            -1.1             2.1            -3.1            -2.8           -0.15             1.2        5e+03    1.6e-05    1e+04        1   ++
    4            -1.1             2.1            -3.1            -2.8           -0.15             1.2        5e+03    1.3e-09    1e+04        1   ++
Considering neighbor 3/20 for current solution
Considering neighbor 4/20 for current solution
Attempt 84/100
Biogeme parameters read from biogeme.toml.
Model with 18 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000189
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03        2.5       10        1   ++
    1      5.7e+03        2.5      3.3 -1.1e+04    -
    2      5.7e+03        2.5      1.7      -13    -
    3      5.3e+03        1.2       17      1.1   ++
    4      5.3e+03        1.2      1.2      -29    -
    5      5.3e+03        1.2     0.62   -0.081    -
    6      5.2e+03      0.011      6.2     0.98   ++
    7      5.2e+03     0.0076       62     0.96   ++
    8      5.2e+03     0.0018  6.2e+02      1.1   ++
    9      5.2e+03    1.2e-05  6.2e+03        1   ++
   10      5.2e+03    1.1e-09  6.2e+03        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000190
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.81           -0.86               0               0               0           -0.97               0               0           -0.97         -0.0023               0               0      5.6e+03      0.036       10      1.1   ++
    1           -0.81            -1.3               0               0               0            -1.1               0               0            -1.1            0.23               0               0      5.5e+03     0.0062    1e+02      1.1   ++
    2           -0.81            -1.3               0               0               0            -1.1               0               0            -1.1            0.23               0               0      5.5e+03     0.0002    1e+03        1   ++
    3           -0.81            -1.3               0               0               0            -1.1               0               0            -1.1            0.23               0               0      5.5e+03    1.9e-07    1e+03        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 16 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000191
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.8e+03      0.039       10      1.1   ++
    1      5.3e+03      0.058    1e+02     0.98   ++
    2      5.3e+03     0.0041    1e+03        1   ++
    3      5.3e+03    0.00015    1e+04        1   ++
    4      5.3e+03    1.7e-07    1e+04        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 85/100
Considering neighbor 0/20 for current solution
Attempt 86/100
Considering neighbor 0/20 for current solution
Attempt 87/100
Considering neighbor 0/20 for current solution
Attempt 88/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000192
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost       b_headway beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_ma beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0           -0.63           -0.89               0               0               0           -0.88         -0.0029               0               0           -0.94          -0.049               0               0      5.5e+03        2.6       10        1   ++
    1            -0.5            -1.3               0               0               0           -0.94         -0.0053               0               0            -1.1            0.15               0               0      5.5e+03       0.33    1e+02      1.1   ++
    2           -0.47            -1.4               0               0               0           -0.95         -0.0059               0               0            -1.1            0.14               0               0      5.5e+03      0.012    1e+03        1   ++
    3           -0.47            -1.4               0               0               0           -0.95         -0.0059               0               0            -1.1            0.14               0               0      5.5e+03    1.7e-05    1e+04        1   ++
    4           -0.47            -1.4               0               0               0           -0.95         -0.0059               0               0            -1.1            0.14               0               0      5.5e+03      3e-11    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 8 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000193
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.65            -0.8            0.72              -1           -0.95           -0.55           -0.27           -0.32      5.2e+03      0.045       10        1   ++
    1           -0.53           -0.93             1.9            -2.6            -1.4           -0.55            0.38            -1.5      4.9e+03      0.019    1e+02      1.1   ++
    2           -0.48            -1.1               2            -2.9            -1.5           -0.61            0.48              -2      4.8e+03     0.0013    1e+03      1.1   ++
    3           -0.47            -1.1               2              -3            -1.5           -0.62            0.49              -2      4.8e+03    9.5e-06    1e+04        1   ++
    4           -0.47            -1.1               2              -3            -1.5           -0.62            0.49              -2      4.8e+03    3.6e-09    1e+04        1   ++
Considering neighbor 1/20 for current solution
Considering neighbor 2/20 for current solution
Attempt 89/100
Biogeme parameters read from biogeme.toml.
Model with 12 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000194
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time beta_TRAIN_TT_S beta_TRAIN_TT_S          b_cost beta_SM_TT_SCAL beta_SM_TT_SCAL     asc_car_ref asc_car_diff_wi beta_CAR_TT_SCA beta_CAR_TT_SCA     Function    Relgrad   Radius      Rho
    0              -1            0.15               0               0               0           -0.35               0               0          -0.045              -1               0               0      5.9e+03      0.076       10      1.1   ++
    1            -2.1             2.2               0               0               0            -1.2               0               0           -0.86            -1.1               0               0      5.2e+03      0.031    1e+02        1   ++
    2            -2.3             2.2               0               0               0            -1.5               0               0           -0.95            -1.5               0               0      5.2e+03     0.0012    1e+03        1   ++
    3            -2.3             2.2               0               0               0            -1.5               0               0           -0.95            -1.5               0               0      5.2e+03    3.9e-06    1e+03        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 90/100
Biogeme parameters read from biogeme.toml.
Model with 11 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000195
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_on asc_car_diff_se asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.94          -0.088          -0.013            0.54              -1           -0.59         -0.0026            -0.5           -0.22          -0.044           -0.22      5.5e+03        2.6       10        1   ++
    1            -1.1            0.41            0.23             1.9            -2.6            -2.5         -0.0049           -0.31           0.083            -0.2               1      4.9e+03       0.75    1e+02        1   ++
    2            -1.3            0.66            0.45             1.9              -3            -2.8         -0.0061           -0.32           0.066           -0.34             1.2      4.9e+03      0.071    1e+03      1.1   ++
    3            -1.3            0.71            0.49             1.9            -3.1            -2.8         -0.0063           -0.32           0.064           -0.36             1.2      4.9e+03     0.0013    1e+04        1   ++
    4            -1.3            0.71            0.49             1.9            -3.1            -2.8         -0.0063           -0.32           0.064           -0.36             1.2      4.9e+03    4.5e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 91/100
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000196
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03        2.5       10        1   ++
    1      5.2e+03          1    1e+02        1   ++
    2      5.2e+03      0.088    1e+03      1.1   ++
    3      5.2e+03     0.0024    1e+04        1   ++
    4      5.2e+03      2e-06    1e+04        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 92/100
Considering neighbor 0/20 for current solution
Attempt 93/100
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000197
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.86               1           -0.68           -0.91         -0.0036           -0.58           -0.25      5.2e+03        2.5       10      1.1   ++
    1           -0.95             1.9            -1.1            -1.1         -0.0054           -0.38           -0.32        5e+03       0.57    1e+02      1.1   ++
    2           -0.99               2            -1.2            -1.1         -0.0062           -0.38            -0.3        5e+03      0.034    1e+03        1   ++
    3              -1               2            -1.2            -1.1         -0.0063           -0.38           -0.28        5e+03    0.00011    1e+04        1   ++
    4              -1               2            -1.2            -1.1         -0.0063           -0.38           -0.28        5e+03    5.4e-06    1e+04        1   ++
Considering neighbor 0/20 for current solution
Considering neighbor 1/20 for current solution
Attempt 94/100
Considering neighbor 0/20 for current solution
Attempt 95/100
Considering neighbor 0/20 for current solution
Attempt 96/100
Considering neighbor 0/20 for current solution
Attempt 97/100
Biogeme parameters read from biogeme.toml.
Model with 10 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000198
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.41           -0.63            0.21         -0.0079              -1           -0.69           -0.26          -0.084           -0.21          -0.036      5.4e+03      0.038       10        1   ++
    1           -0.33            -1.1            0.73            0.32            -1.5            -1.1           -0.32            0.25          -0.071           -0.53      5.2e+03     0.0093    1e+02      1.1   ++
    2           -0.49            -1.2            0.93            0.51            -1.5            -1.1           -0.33            0.27          -0.081           -0.63      5.2e+03    0.00065    1e+03      1.1   ++
    3           -0.52            -1.2            0.96            0.53            -1.5            -1.1           -0.33            0.27          -0.082           -0.63      5.2e+03    6.9e-06    1e+04        1   ++
    4           -0.52            -1.2            0.96            0.53            -1.5            -1.1           -0.33            0.27          -0.082           -0.63      5.2e+03    9.2e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000199
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0          -0.083           -0.77           -0.62               0               0               0         -0.0027               0               0           -0.47           0.023               0               0      5.6e+03        2.9       10      1.1   ++
    1            0.34            -1.1            -1.1               0               0               0          -0.005               0               0           -0.38            0.33               0               0      5.4e+03       0.37    1e+02      1.1   ++
    2            0.41            -1.2            -1.1               0               0               0         -0.0057               0               0           -0.39            0.32               0               0      5.4e+03      0.018    1e+03        1   ++
    3            0.41            -1.2            -1.1               0               0               0         -0.0057               0               0           -0.39            0.32               0               0      5.4e+03    3.6e-05    1e+04        1   ++
    4            0.41            -1.2            -1.1               0               0               0         -0.0057               0               0           -0.39            0.32               0               0      5.4e+03    1.4e-10    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 18 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000200
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03        2.7       10        1   ++
    1      5.6e+03        2.7      1.9      -91    -
    2      5.6e+03        2.7     0.94     -1.1    -
    3      5.4e+03        1.3      9.4     0.95   ++
    4      5.4e+03      0.081       94        1   ++
    5      5.4e+03    0.00075  9.4e+02        1   ++
    6      5.4e+03    1.1e-07  9.4e+02        1   ++
Considering neighbor 2/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000201
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.5e+03          3       10      1.1   ++
    1      5.4e+03       0.45    1e+02      1.1   ++
    2      5.4e+03      0.039    1e+03      1.1   ++
    3      5.4e+03    0.00034    1e+04        1   ++
    4      5.4e+03    3.4e-08    1e+04        1   ++
Considering neighbor 3/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000202
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_wi beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.83               1           -0.71               0               0               0        -0.00098               0               0           -0.26           -0.43               0               0      5.4e+03        2.9       10      1.1   ++
    1           -0.83             1.7            -1.1               0               0               0         -0.0046               0               0          -0.054            -1.1               0               0      5.3e+03       0.58    1e+02      1.1   ++
    2           -0.85             1.8            -1.1               0               0               0          -0.006               0               0          -0.065            -1.3               0               0      5.3e+03      0.035    1e+03        1   ++
    3           -0.86             1.8            -1.1               0               0               0         -0.0061               0               0          -0.066            -1.3               0               0      5.3e+03    0.00014    1e+04        1   ++
    4           -0.86             1.8            -1.1               0               0               0         -0.0061               0               0          -0.066            -1.3               0               0      5.3e+03    2.2e-09    1e+04        1   ++
Considering neighbor 4/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 7 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000203
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.72            0.73           -0.83              -1         -0.0023           -0.37           -0.33      5.2e+03        2.3       10      1.1   ++
    1            -1.1               2           -0.98            -1.4         -0.0051           -0.48            -1.2        5e+03       0.77    1e+02      1.1   ++
    2            -1.2             2.1              -1            -1.4         -0.0061           -0.48            -1.8        5e+03      0.032    1e+03      1.1   ++
    3            -1.2             2.1              -1            -1.5         -0.0063           -0.49            -1.8        5e+03    5.4e-05    1e+04        1   ++
    4            -1.2             2.1              -1            -1.5         -0.0063           -0.49            -1.8        5e+03    3.8e-06    1e+04        1   ++
Considering neighbor 5/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000204
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.6e+03          3       10      1.1   ++
    1      5.3e+03       0.43    1e+02      1.1   ++
    2      5.3e+03      0.038    1e+03        1   ++
    3      5.3e+03    0.00034    1e+04        1   ++
    4      5.3e+03    3.1e-08    1e+04        1   ++
Considering neighbor 6/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 17 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000205
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.5e+03        2.7       10      1.1   ++
    1      5.4e+03       0.42    1e+02      1.1   ++
    2      5.4e+03      0.038    1e+03      1.1   ++
    3      5.4e+03     0.0004    1e+04        1   ++
    4      5.4e+03    5.3e-08    1e+04        1   ++
Considering neighbor 7/20 for current solution
Considering neighbor 8/20 for current solution
Attempt 98/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000206
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost beta_TRAIN_COST beta_TRAIN_COST       b_headway beta_SM_COST_SC beta_SM_COST_SC     asc_car_ref asc_car_diff_ma beta_CAR_CO_SCA beta_CAR_CO_SCA     Function    Relgrad   Radius      Rho
    0           -0.41           -0.74              -1               0               0               0        -0.00051               0               0           -0.44          -0.088               0               0      5.6e+03        2.8       10        1   ++
    1            0.54            -1.2            -2.8               0               0               0         -0.0045               0               0           -0.22             0.3               0               0      5.4e+03       0.37    1e+02      1.1   ++
    2            0.65            -1.2              -3               0               0               0         -0.0056               0               0           -0.23            0.32               0               0      5.4e+03      0.019    1e+03        1   ++
    3            0.65            -1.2              -3               0               0               0         -0.0057               0               0           -0.23            0.32               0               0      5.4e+03    4.8e-05    1e+04        1   ++
    4            0.65            -1.2              -3               0               0               0         -0.0057               0               0           -0.23            0.32               0               0      5.4e+03    2.5e-10    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 23 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000207
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03          3       10        1   ++
    1      5.6e+03       0.41    1e+02      1.1   ++
    2      5.6e+03      0.034    1e+03      1.1   ++
    3      5.6e+03    0.00026    1e+04        1   ++
    4      5.6e+03    2.1e-08    1e+04        1   ++
Considering neighbor 1/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 22 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000208
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03      0.039       10        1   ++
    1      5.6e+03     0.0083    1e+02      1.1   ++
    2      5.6e+03    0.00067    1e+03        1   ++
    3      5.6e+03    5.4e-06    1e+03        1   ++
Considering neighbor 2/20 for current solution
Considering neighbor 3/20 for current solution
Attempt 99/100
Biogeme parameters read from biogeme.toml.
Model with 13 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000209
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_on asc_car_diff_se     Function    Relgrad   Radius      Rho
    0           -0.55           -0.89            0.14         -0.0037           -0.93             1.8              -1               1          0.0058           -0.19           0.048           -0.13          -0.045      5.6e+03        2.2        1     0.82    +
    1           -0.16            -1.2             1.1            0.11            -1.5             0.9            -1.1            0.62         -0.0057            -0.5             0.3           0.032           -0.18      5.2e+03       0.57       10        1   ++
    2          -0.019            -1.1            0.95            0.54            -1.9            0.35            -1.1            0.62         -0.0059           -0.37            0.31          -0.078           -0.52      5.1e+03      0.016    1e+02     0.93   ++
    3           -0.21            -1.1            0.96            0.51            -1.6            0.38            -1.1            0.53         -0.0059           -0.47            0.28          -0.057           -0.52      5.1e+03    0.00091    1e+03     0.97   ++
    4            -0.2            -1.1            0.96            0.51            -1.6            0.38            -1.1            0.54         -0.0059           -0.47            0.28          -0.059           -0.52      5.1e+03    1.1e-05    1e+04        1   ++
    5            -0.2            -1.1            0.96            0.51            -1.6            0.38            -1.1            0.54         -0.0059           -0.47            0.28          -0.059           -0.52      5.1e+03    4.7e-07    1e+04        1   ++
Considering neighbor 0/20 for current solution
Biogeme parameters read from biogeme.toml.
Model with 23 unknown parameters [max: 50]
*** Estimate b21_multiple_models_000210
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.     Function    Relgrad   Radius      Rho
    0      5.7e+03          3       10        1   ++
    1      5.6e+03       0.41    1e+02      1.1   ++
    2      5.6e+03      0.034    1e+03      1.1   ++
    3      5.6e+03    0.00026    1e+04        1   ++
    4      5.6e+03    2.1e-08    1e+04        1   ++
Considering neighbor 1/20 for current solution
Considering neighbor 2/20 for current solution
Pareto file has been updated: b22_multiple_models.pareto
Before the algorithm: 1 models, with 1 Pareto.
After the algorithm: 175 models, with 7 Pareto.
VNS algorithm completed. Postprocessing of the Pareto optimal solutions
Pareto set initialized from file with 175 elements [7 Pareto] and 0 invalid elements.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22_multiple_models_000000.iter
Cannot read file __b22_multiple_models_000000.iter. Statement is ignored.
Starting values for the algorithm: {}
As the model is not too complex, we activate the calculation of second derivatives. To change this behavior, modify the algorithm to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0              -1            0.15              -1           -0.35          -0.045              -1      5.5e+03      0.043       10      1.1   ++
    1            -1.2             2.3            -2.4            -1.2           -0.18            -1.4        5e+03      0.026    1e+02        1   ++
    2            -1.2             2.1            -2.9            -1.4           -0.19            -1.9      4.9e+03     0.0017    1e+03        1   ++
    3            -1.2             2.1            -2.9            -1.5           -0.19            -1.9      4.9e+03    1.5e-05    1e+04        1   ++
    4            -1.2             2.1            -2.9            -1.5           -0.19            -1.9      4.9e+03    1.4e-09    1e+04        1   ++
Optimization algorithm has converged.
Relative gradient: 1.3575712455194652e-09
Cause of termination: Relative gradient = 1.4e-09 <= 6.1e-06
Number of function evaluations: 16
Number of gradient evaluations: 11
Number of hessian evaluations: 5
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 5
Proportion of Hessian calculation: 5/5 = 100.0%
Optimization time: 0:00:00.385619
Calculate second derivatives and BHHH
File b22_multiple_models_000000.html has been generated.
File b22_multiple_models_000000.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22_multiple_models_000001.iter
Cannot read file __b22_multiple_models_000001.iter. Statement is ignored.
Starting values for the algorithm: {}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_          b_time          b_cost       b_headway     asc_car_ref asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.53            0.21              -1           -0.24         -0.0043           -0.52           -0.14      5.5e+03        2.5       10        1   ++
    1           -0.88             2.4            -1.4            -1.3         -0.0052           -0.24            -1.3        5e+03       0.97    1e+02     0.96   ++
    2           -0.92             2.2            -1.6            -1.5          -0.006           -0.28            -1.8      4.9e+03      0.029    1e+03        1   ++
    3           -0.92             2.2            -1.6            -1.5         -0.0061           -0.28            -1.8      4.9e+03    0.00023    1e+04        1   ++
    4           -0.92             2.2            -1.6            -1.5         -0.0061           -0.28            -1.8      4.9e+03    5.6e-06    1e+04        1   ++
Optimization algorithm has converged.
Relative gradient: 5.61836717542383e-06
Cause of termination: Relative gradient = 5.6e-06 <= 6.1e-06
Number of function evaluations: 16
Number of gradient evaluations: 11
Number of hessian evaluations: 5
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 5
Proportion of Hessian calculation: 5/5 = 100.0%
Optimization time: 0:00:00.468167
Calculate second derivatives and BHHH
File b22_multiple_models_000001.html has been generated.
File b22_multiple_models_000001.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22_multiple_models_000002.iter
Cannot read file __b22_multiple_models_000002.iter. Statement is ignored.
Starting values for the algorithm: {}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     lambda_cost       b_headway     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.47            -0.7            0.44              -1           -0.64               1          0.0022           -0.28          -0.067           -0.19      5.3e+03        2.7       10      1.1   ++
    1           -0.47            -0.7            0.44              -1           -0.64               1          0.0022           -0.28          -0.067           -0.19      5.3e+03        2.7      1.3     -3.2    -
    2           -0.12              -1             1.7            -1.4            -1.2            0.84         -0.0024           -0.33            0.21           -0.62      4.9e+03        0.7       13        1   ++
    3           -0.12              -1             1.7            -1.4            -1.2            0.84         -0.0024           -0.33            0.21           -0.62      4.9e+03        0.7     0.64    0.017    -
    4           0.019            -1.2             2.2            -1.6            -1.4             0.2         -0.0063           -0.52            0.31            -1.1      4.8e+03       0.15      6.4      1.1   ++
    5          -0.071            -1.2             2.2            -1.6            -1.5          -0.045         -0.0066           -0.68            0.45            -1.8      4.8e+03       0.03       64        1   ++
    6          -0.071            -1.2             2.2            -1.6            -1.5          -0.036         -0.0066           -0.69            0.46              -2      4.8e+03     0.0014  6.4e+02        1   ++
    7          -0.071            -1.2             2.2            -1.6            -1.5          -0.036         -0.0066           -0.69            0.46              -2      4.8e+03    4.6e-06  6.4e+02        1   ++
Optimization algorithm has converged.
Relative gradient: 4.597929821476322e-06
Cause of termination: Relative gradient = 4.6e-06 <= 6.1e-06
Number of function evaluations: 21
Number of gradient evaluations: 13
Number of hessian evaluations: 6
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 8
Proportion of Hessian calculation: 6/6 = 100.0%
Optimization time: 0:00:01.062942
Calculate second derivatives and BHHH
File b22_multiple_models_000002.html has been generated.
File b22_multiple_models_000002.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22_multiple_models_000003.iter
Cannot read file __b22_multiple_models_000003.iter. Statement is ignored.
Starting values for the algorithm: {}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time       lambda_tt          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.45           -0.67            0.68           -0.95               2           -0.91            -0.5           -0.27           -0.33      5.8e+03       0.14        1     0.58    +
    1           -0.78            -1.3             1.7           -0.38             1.8            -1.1           -0.53            0.15            -0.9      5.1e+03      0.028       10     0.95   ++
    2           -0.78            -1.3             1.7           -0.38             1.8            -1.1           -0.53            0.15            -0.9      5.1e+03      0.028        5 -2.5e+03    -
    3           -0.78            -1.3             1.7           -0.38             1.8            -1.1           -0.53            0.15            -0.9      5.1e+03      0.028      2.5      -13    -
    4           -0.78            -1.3             1.7           -0.38             1.8            -1.1           -0.53            0.15            -0.9      5.1e+03      0.028      1.2    0.071    -
    5            -1.1            -1.3               2           -0.92            0.56            -1.5           -0.72            0.23            -1.2      4.9e+03      0.031       12     0.95   ++
    6           -0.34            -1.1             2.1            -1.7          -0.041            -1.5           -0.51            0.46            -1.8      4.8e+03     0.0035       12     0.82    +
    7           -0.34            -1.1             2.1            -1.7            0.21            -1.5           -0.54            0.49              -2      4.8e+03     0.0038  1.2e+02     0.99   ++
    8           -0.39            -1.1             2.1            -1.6            0.22            -1.5           -0.56            0.48              -2      4.8e+03    4.7e-05  1.2e+03     0.99   ++
    9           -0.39            -1.1             2.1            -1.6            0.22            -1.5           -0.56            0.48              -2      4.8e+03    7.9e-09  1.2e+03        1   ++
Optimization algorithm has converged.
Relative gradient: 7.901188754997834e-09
Cause of termination: Relative gradient = 7.9e-09 <= 6.1e-06
Number of function evaluations: 25
Number of gradient evaluations: 15
Number of hessian evaluations: 7
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 10
Proportion of Hessian calculation: 7/7 = 100.0%
Optimization time: 0:00:01.073727
Calculate second derivatives and BHHH
File b22_multiple_models_000003.html has been generated.
File b22_multiple_models_000003.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22_multiple_models_000004.iter
Cannot read file __b22_multiple_models_000004.iter. Statement is ignored.
Starting values for the algorithm: {}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0              -1              -1           -0.38           -0.11      5.6e+03      0.041       10      1.1   ++
    1           -0.65            -2.8           -0.89          -0.037      5.3e+03      0.016    1e+02      1.1   ++
    2           -0.49            -3.3            -1.1         -0.0039      5.3e+03     0.0015    1e+03      1.1   ++
    3           -0.48            -3.4            -1.1         -0.0026      5.3e+03    9.8e-06    1e+04        1   ++
    4           -0.48            -3.4            -1.1         -0.0026      5.3e+03    4.4e-10    1e+04        1   ++
Optimization algorithm has converged.
Relative gradient: 4.432509937051248e-10
Cause of termination: Relative gradient = 4.4e-10 <= 6.1e-06
Number of function evaluations: 16
Number of gradient evaluations: 11
Number of hessian evaluations: 5
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 5
Proportion of Hessian calculation: 5/5 = 100.0%
Optimization time: 0:00:00.310096
Calculate second derivatives and BHHH
File b22_multiple_models_000004.html has been generated.
File b22_multiple_models_000004.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22_multiple_models_000005.iter
Cannot read file __b22_multiple_models_000005.iter. Statement is ignored.
Starting values for the algorithm: {}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.   asc_train_ref asc_train_diff_ asc_train_diff_          b_time          b_cost     asc_car_ref asc_car_diff_ma asc_car_diff_wi     Function    Relgrad   Radius      Rho
    0           -0.42           -0.58            0.49              -1           -0.61           -0.36           -0.18           -0.22      5.3e+03      0.052       10        1   ++
    1            -0.4           -0.96             2.1            -1.5            -1.4           -0.47            0.37            -1.4      4.8e+03      0.021    1e+02        1   ++
    2           -0.37            -1.2             2.1            -1.6            -1.5           -0.55            0.45            -1.9      4.8e+03     0.0012    1e+03        1   ++
    3           -0.37            -1.2             2.1            -1.6            -1.5           -0.55            0.46              -2      4.8e+03    9.3e-06    1e+04        1   ++
    4           -0.37            -1.2             2.1            -1.6            -1.5           -0.55            0.46              -2      4.8e+03      3e-09    1e+04        1   ++
Optimization algorithm has converged.
Relative gradient: 2.9723494479820364e-09
Cause of termination: Relative gradient = 3e-09 <= 6.1e-06
Number of function evaluations: 16
Number of gradient evaluations: 11
Number of hessian evaluations: 5
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 5
Proportion of Hessian calculation: 5/5 = 100.0%
Optimization time: 0:00:00.450035
Calculate second derivatives and BHHH
File b22_multiple_models_000005.html has been generated.
File b22_multiple_models_000005.yaml has been generated.
Biogeme parameters provided by the user.
*** Initial values of the parameters are obtained from the file __b22_multiple_models_000006.iter
Cannot read file __b22_multiple_models_000006.iter. Statement is ignored.
Starting values for the algorithm: {}
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: Newton with trust region for simple bounds
Iter.       asc_train          b_time       lambda_tt          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0           -0.68              -1             1.9           -0.64           -0.59        6e+03       0.11        1     0.59    +
    1           -0.92           -0.75             1.6            -1.6          -0.024      5.4e+03      0.031       10     0.96   ++
    2           -0.92           -0.75             1.6            -1.6          -0.024      5.4e+03      0.031      1.2     -1.7    -
    3           -0.68            -1.8            0.39            -2.3            0.03      5.3e+03       0.04      1.2     0.88    +
    4           -0.48            -1.7            0.47            -2.3           0.054      5.2e+03     0.0029       12     0.95   ++
    5            -0.5            -1.7            0.48            -2.4           0.057      5.2e+03    2.1e-05  1.2e+02        1   ++
    6            -0.5            -1.7            0.48            -2.4           0.057      5.2e+03    1.2e-09  1.2e+02        1   ++
Optimization algorithm has converged.
Relative gradient: 1.2406510917479943e-09
Cause of termination: Relative gradient = 1.2e-09 <= 6.1e-06
Number of function evaluations: 20
Number of gradient evaluations: 13
Number of hessian evaluations: 6
Algorithm: Newton with trust region for simple bound constraints
Number of iterations: 7
Proportion of Hessian calculation: 6/6 = 100.0%
Optimization time: 0:00:00.886563
Calculate second derivatives and BHHH
File b22_multiple_models_000006.html has been generated.
File b22_multiple_models_000006.yaml has been generated.
Pareto: 7
Considered: 175
Removed: 7
summary, description = compile_estimation_results(
    non_dominated_models, use_short_names=True
)
print(summary)
                                   Model_000000  ...    Model_000006
Number of estimated parameters                6  ...               5
Sample size                                6768  ...            6768
Final log likelihood                   -4946.89  ...       -5245.656
Akaike Information Criterion            9905.78  ...        10501.31
Bayesian Information Criterion           9946.7  ...        10535.41
asc_train_ref (t-test)             -1.24  (-15)  ...
asc_train_diff_with_ga (t-test)    2.12  (24.2)  ...
b_time (t-test)                  -2.94  (-16.3)  ...  -1.67  (-21.5)
b_cost (t-test)                  -1.47  (-17.8)  ...  -2.35  (-18.3)
asc_car_ref (t-test)             -0.19  (-3.16)  ...
asc_car_diff_with_ga (t-test)     -1.9  (-9.51)  ...
b_headway (t-test)                               ...
asc_train_diff_male (t-test)                     ...
lambda_cost (t-test)                             ...
asc_car_diff_male (t-test)                       ...
lambda_tt (t-test)                               ...   0.476  (6.32)
asc_train (t-test)                               ...  -0.498  (-7.6)
asc_car (t-test)                                 ...  0.0566  (1.13)

[18 rows x 7 columns]

Explanation of the short names of the model.

for k, v in description.items():
    if k != v:
        print(f'{k}: {v}')
Model_000000: asc:GA;train_cost_catalog:log;train_headway_catalog:without_headway;train_tt_catalog:sqrt
Model_000001: asc:GA;train_cost_catalog:log;train_headway_catalog:with_headway;train_tt_catalog:log
Model_000002: asc:MALE-GA;train_cost_catalog:boxcox;train_headway_catalog:with_headway;train_tt_catalog:log
Model_000003: asc:MALE-GA;train_cost_catalog:log;train_headway_catalog:without_headway;train_tt_catalog:boxcox
Model_000004: asc:no_seg;train_cost_catalog:linear;train_headway_catalog:without_headway;train_tt_catalog:sqrt
Model_000005: asc:MALE-GA;train_cost_catalog:log;train_headway_catalog:without_headway;train_tt_catalog:log
Model_000006: asc:no_seg;train_cost_catalog:sqrt;train_headway_catalog:without_headway;train_tt_catalog:boxcox

Total running time of the script: (2 minutes 53.780 seconds)

Gallery generated by Sphinx-Gallery