Note
Go to the end to download the full example code.
5. Mixture of logit models: normal distributionΒΆ
Example of a normal mixture of logit models, using Bayesian inference.
Michel Bierlaire, EPFL Thu Nov 20 2025, 11:26:01
import biogeme.biogeme_logging as blog
from IPython.core.display_functions import display
from biogeme.bayesian_estimation import BayesianResults, get_pandas_estimated_parameters
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, DistributedParameter, Draws
from biogeme.models import loglogit
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b05_normal_mixtures.py')
Example b05_normal_mixtures.py
The scale parameters must stay away from zero. We define a small but positive lower bound
POSITIVE_LOWER_BOUND = 1.0e-5
Parameters to be estimated
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, 0, 0)
Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation.
b_time = Beta('b_time', 0, None, 0, 0)
It is advised not to use 0 as starting value for the following parameter.
b_time_s = Beta('b_time_s', 10, POSITIVE_LOWER_BOUND, None, 0)
b_time_eps = Draws('b_time_eps', 'NORMAL')
The purpose of the DistributedParameter operator is to explicitly store the simulated individual-level parameters in the output file.
b_time_rnd = DistributedParameter('b_time_rnd', b_time + b_time_s * b_time_eps)
Definition of the utility functions.
v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
When performing maximum likelihood estimation, in order to obtain the loglikelihood, we would first calculate the kernel conditional on b_time_rnd, and then integrate over b_time_rnd using Monte-Carlo. However, when performing Bayesian estimation, the random parameters will be explicitly simulated. Therefore, what the algorithm needs is the conditional log likelihood, which is simply a (log) logit here. This is one of the most important advantage of this estimation method: it does not require to calculate the complicated integrals.
conditional_log_likelihood = loglogit(v, av, CHOICE)
These notes will be included as such in the report file.
USER_NOTES = 'Example of Bayesian estimation of a mixture of logit models with three alternatives'
Create the Biogeme object.
the_biogeme = BIOGEME(
database,
conditional_log_likelihood,
user_notes=USER_NOTES,
)
the_biogeme.model_name = 'b05_normal_mixture'
Biogeme parameters read from biogeme.toml.
Estimate the parameters.
try:
bayesian_results = BayesianResults.from_netcdf(
filename=f'saved_results/{the_biogeme.model_name}.nc'
)
except FileNotFoundError:
bayesian_results = the_biogeme.bayesian_estimation()
Loaded NetCDF file size: 1.8 GB
load finished in 9243 ms (9.24 s)
Get the results in a pandas table
pandas_results = get_pandas_estimated_parameters(
estimation_results=bayesian_results,
)
display(pandas_results)
Diagnostics computation took 69.8 seconds (cached).
Name Value (mean) Value (median) ... R hat ESS (bulk) ESS (tail)
0 asc_train -0.400545 -0.399224 ... 1.000274 4764.255073 5518.165472
1 asc_car 0.139390 0.139290 ... 1.001596 2727.944492 5227.745062
2 b_time -2.272711 -2.269103 ... 1.004406 1225.734728 2834.903303
3 b_time_s 1.675588 1.672388 ... 1.006639 868.962343 1806.335511
4 b_cost -1.288904 -1.287596 ... 1.000337 4855.099327 5827.038372
[5 rows x 12 columns]
Total running time of the script: (1 minutes 19.148 seconds)