6b. Mixture of logit models with uniform MLHS drawsΒΆ

Example of a uniform mixture of logit models, using Monte-Carlo

integration. The mixing distribution is uniform. The draws are from the Modified Hypercube Latin Square.

Michel Bierlaire, EPFL Fri Jun 20 2025, 11:24:34

from IPython.core.display_functions import display

import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta, Draws, MonteCarlo, log
from biogeme.models import logit
from biogeme.results_processing import (
    EstimationResults,
    get_pandas_estimated_parameters,
)

See the data processing script: Data preparation for Swissmetro.

from swissmetro_data import (
    CAR_AV_SP,
    CAR_CO_SCALED,
    CAR_TT_SCALED,
    CHOICE,
    SM_AV,
    SM_COST_SCALED,
    SM_TT_SCALED,
    TRAIN_AV_SP,
    TRAIN_COST_SCALED,
    TRAIN_TT_SCALED,
    database,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b06b_unif_mixture_MHLS')
Example b06b_unif_mixture_MHLS

Parameters to be estimated.

asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)

Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation.

b_time = Beta('b_time', 0, None, None, 0)

It is advised not to use 0 as starting value for the following parameter.

b_time_s = Beta('b_time_s', 1, None, None, 0)

Define a random parameter, uniformly distributed, designed to be used for Monte-Carlo simulation. The type of draws is set to NORMAL_MLHS.

b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'NORMAL_MLHS')

Definition of the utility functions.

v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

v = {1: v_train, 2: v_swissmetro, 3: v_car}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Conditional on b_time_rnd, we have a logit model (called the kernel).

conditional_probability = logit(v, av, CHOICE)

We integrate over b_time_rnd using Monte-Carlo

log_probability = log(MonteCarlo(conditional_probability))

Create the Biogeme object.

the_biogeme = BIOGEME(database, log_probability, number_of_draws=10000, seed=1223)
the_biogeme.model_name = 'b06b_unif_mixture_MHLS'
Biogeme parameters read from biogeme.toml.

Estimate the parameters.

try:
    results = EstimationResults.from_yaml_file(
        filename=f'saved_results/{the_biogeme.model_name}.yaml'
    )
except FileNotFoundError:
    results = the_biogeme.estimate()
*** Initial values of the parameters are obtained from the file __b06b_unif_mixture_MHLS.iter
Cannot read file __b06b_unif_mixture_MHLS.iter. Statement is ignored.
Starting values for the algorithm: {}
As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the algorithm from "automatic" to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Iter.       asc_train          b_time        b_time_s          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0              -1              -1               2              -1               1      6.1e+03       0.16        1     0.25    +
    1           -0.73              -2               3            -0.4               0      5.5e+03      0.049        1     0.36    +
    2           -0.95            -2.3             2.6            -1.4            0.51      5.4e+03      0.054        1     0.39    +
    3           -0.95            -2.3             2.6            -1.4            0.51      5.4e+03      0.054      0.5    -0.15    -
    4           -0.45            -2.8             2.6            -1.1           0.006      5.3e+03       0.03      0.5      0.5    +
    5          -0.091            -2.6             2.5            -1.6            0.33      5.3e+03      0.047      0.5     0.13    +
    6          -0.091            -2.6             2.5            -1.6            0.33      5.3e+03      0.047     0.25    -0.18    -
    7           -0.34            -2.9             2.3            -1.4            0.26      5.2e+03      0.022     0.25     0.65    +
    8           -0.29            -2.6             2.2            -1.2            0.22      5.2e+03     0.0084     0.25      0.5    +
    9           -0.29            -2.6             2.2            -1.2            0.22      5.2e+03     0.0084     0.12     -2.8    -
   10           -0.29            -2.6             2.2            -1.2            0.22      5.2e+03     0.0084    0.062    -0.23    -
   11           -0.36            -2.6             2.1            -1.3            0.28      5.2e+03      0.006    0.062     0.46    +
   12           -0.29            -2.6             2.1            -1.4            0.22      5.2e+03     0.0065    0.062     0.52    +
   13           -0.35            -2.6               2            -1.3            0.21      5.2e+03     0.0092    0.062     0.51    +
   14           -0.33            -2.5               2            -1.3            0.21      5.2e+03     0.0034    0.062     0.89    +
   15           -0.35            -2.5             1.9            -1.3            0.18      5.2e+03     0.0059    0.062     0.84    +
   16           -0.36            -2.4             1.9            -1.3            0.21      5.2e+03     0.0029    0.062     0.62    +
   17           -0.37            -2.4             1.8            -1.3            0.16      5.2e+03     0.0018    0.062     0.84    +
   18            -0.4            -2.3             1.7            -1.3            0.17      5.2e+03     0.0027    0.062     0.31    +
   19           -0.39            -2.3             1.7            -1.3            0.13      5.2e+03      0.002    0.062     0.48    +
   20           -0.39            -2.3             1.7            -1.3            0.13      5.2e+03      0.002    0.031     -0.8    -
   21           -0.39            -2.3             1.7            -1.3            0.14      5.2e+03     0.0016    0.031     0.28    +
   22           -0.39            -2.3             1.7            -1.3            0.14      5.2e+03     0.0016    0.016     0.08    -
   23            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03     0.0009    0.016     0.79    +
   24            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03     0.0009   0.0078    -0.47    -
   25            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    0.00056   0.0078     0.33    +
   26            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    0.00026   0.0078     0.13    +
   27            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    0.00026   0.0039     -1.3    -
   28            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    0.00026    0.002   0.0035    -
   29            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    0.00028    0.002     0.61    +
   30            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03     0.0001    0.002      0.8    +
   31            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    5.8e-05    0.002     0.89    +
   32            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    3.3e-05    0.002     0.76    +
   33            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    3.2e-05    0.002     0.37    +
   34            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    3.2e-05  0.00098     -2.3    -
   35            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    3.2e-05  0.00049   0.0087    -
   36            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    9.4e-06   0.0049     0.94   ++
   37            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    9.4e-06   0.0024      -52    -
   38            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    9.4e-06   0.0012      -27    -
   39            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    9.4e-06  0.00061      -10    -
   40            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    9.4e-06  0.00031     -3.5    -
   41            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    9.4e-06  0.00015       -1    -
   42            -0.4            -2.3             1.7            -1.3            0.14      5.2e+03    1.6e-06  0.00015     0.86    -
Optimization algorithm has converged.
Relative gradient: 1.632630973351514e-06
Cause of termination: Relative gradient = 1.6e-06 <= 6.1e-06
Number of function evaluations: 98
Number of gradient evaluations: 55
Number of hessian evaluations: 0
Algorithm: BFGS with trust region for simple bound constraints
Number of iterations: 43
Proportion of Hessian calculation: 0/27 = 0.0%
Optimization time: 0:01:37.390006
Calculate second derivatives and BHHH
File b06b_unif_mixture_MHLS.html has been generated.
File b06b_unif_mixture_MHLS.yaml has been generated.
print(results.short_summary())
Results for model b06b_unif_mixture_MHLS
Nbr of parameters:              5
Sample size:                    6768
Excluded data:                  3960
Final log likelihood:           -5214.947
Akaike Information Criterion:   10439.89
Bayesian Information Criterion: 10473.99
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
        Name     Value  Robust std err.  Robust t-stat.  Robust p-value
0  asc_train -0.401859         0.065945       -6.093814    1.102520e-09
1     b_time -2.259754         0.117179      -19.284630    0.000000e+00
2   b_time_s  1.657023         0.132669       12.489949    0.000000e+00
3     b_cost -1.285443         0.086294      -14.896028    0.000000e+00
4    asc_car  0.137021         0.051739        2.648291    8.089997e-03

Total running time of the script: (3 minutes 27.092 seconds)

Gallery generated by Sphinx-Gallery