25. Triangular mixture of logitΒΆ

Example of a mixture of logit models, using Monte-Carlo integration. The mixing distribution is specified by the user. Here, a triangular distribution.

Michel Bierlaire, EPFL Sat Jun 28 2025, 12:49:10

import numpy as np
from IPython.core.display_functions import display

import biogeme.biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.draws import RandomNumberGeneratorTuple
from biogeme.expressions import Beta, Draws, MonteCarlo, log
from biogeme.models import logit
from biogeme.results_processing import (
    EstimationResults,
    get_pandas_estimated_parameters,
)

See the data processing script: Data preparation for Swissmetro.

from swissmetro_data import (
    CAR_AV_SP,
    CAR_CO_SCALED,
    CAR_TT_SCALED,
    CHOICE,
    SM_AV,
    SM_COST_SCALED,
    SM_TT_SCALED,
    TRAIN_AV_SP,
    TRAIN_COST_SCALED,
    TRAIN_TT_SCALED,
    database,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b25_triangular_mixture.py')
Example b25_triangular_mixture.py

Parameters to be estimated.

asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_cost = Beta('b_cost', 0, None, None, 0)

Define a random parameter with a triangular distribution, designed to be used for Monte-Carlo simulation. The triangular distribution is not directly available from Biogeme. The draws have to be generated by a function provided by the user.

Mean of the distribution.

b_time = Beta('b_time', 0, None, None, 0)

Scale of the distribution. It is advised not to use 0 as starting value for the following parameter.

b_time_s = Beta('b_time_s', 1, None, None, 0)

Function generating the draws.

def the_triangular_generator(sample_size: int, number_of_draws: int) -> np.ndarray:
    """
    User-defined random number generator to the database.
    See the `numpy.random` documentation to obtain a list of other distributions.
    """
    return np.random.triangular(-1, 0, 1, (sample_size, number_of_draws))

Associate the function with a name.

my_random_number_generators = {
    'TRIANGULAR': RandomNumberGeneratorTuple(
        generator=the_triangular_generator,
        description='Draws from a triangular distribution',
    )
}

Define a random parameter with a triangular distribution, designed to be used for Monte-Carlo simulation.

b_time_rnd = b_time + b_time_s * Draws('b_time_rnd', 'TRIANGULAR')

Definition of the utility functions.

v_train = asc_train + b_time_rnd * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time_rnd * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time_rnd * CAR_TT_SCALED + b_cost * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives

v = {1: v_train, 2: v_swissmetro, 3: v_car}

Associate the availability conditions with the alternatives

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Conditional to b_time_rnd, we have a logit model (called the kernel)

conditional_probability = logit(v, av, CHOICE)

We integrate over b_time_rnd using Monte-Carlo

log_probability = log(MonteCarlo(conditional_probability))
the_biogeme = BIOGEME(
    database,
    log_probability,
    random_number_generators=my_random_number_generators,
    number_of_draws=10_000,
    seed=1223,
)
the_biogeme.model_name = 'b25_triangular_mixture'
Biogeme parameters read from biogeme.toml.

Estimate the parameters.

try:
    results = EstimationResults.from_yaml_file(
        filename=f'saved_results/{the_biogeme.model_name}.yaml'
    )
except FileNotFoundError:
    results = the_biogeme.estimate()
*** Initial values of the parameters are obtained from the file __b25_triangular_mixture.iter
Cannot read file __b25_triangular_mixture.iter. Statement is ignored.
Starting values for the algorithm: {}
As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the algorithm from "automatic" to "simple_bounds" in the TOML file.
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Iter.       asc_train          b_time        b_time_s          b_cost         asc_car     Function    Relgrad   Radius      Rho
    0              -1              -1               2              -1              -1      5.5e+03      0.092        1     0.39    +
    1              -1              -1               2              -1              -1      5.5e+03      0.092      0.5    -0.57    -
    2            -1.5           -0.82             1.9            -1.5            -0.5      5.4e+03      0.045      0.5     0.27    +
    3              -1            -1.2             1.9            -1.2           -0.54      5.3e+03      0.035      0.5     0.88    +
    4           -0.93            -1.3               2            -1.3          -0.038      5.3e+03      0.029      0.5     0.31    +
    5           -0.52            -1.8               2            -1.1          -0.073      5.3e+03      0.025      0.5     0.42    +
    6            -0.5            -1.8             2.5            -1.4           0.026      5.2e+03      0.019      0.5     0.41    +
    7            -0.5            -1.8             2.5            -1.4           0.026      5.2e+03      0.019     0.25    0.045    -
    8           -0.45            -1.8             2.6            -1.2          -0.043      5.2e+03     0.0094     0.25      0.6    +
    9           -0.45            -1.8             2.6            -1.2          -0.043      5.2e+03     0.0094     0.12       -1    -
   10           -0.45            -1.8             2.6            -1.2          -0.043      5.2e+03     0.0094    0.062   -0.057    -
   11           -0.51            -1.9             2.7            -1.2           0.019      5.2e+03     0.0067    0.062      0.8    +
   12           -0.48            -1.9             2.7            -1.2           0.017      5.2e+03     0.0046    0.062     0.84    +
   13           -0.51            -1.9             2.8            -1.2           0.076      5.2e+03     0.0057    0.062     0.26    +
   14           -0.46            -1.9             2.9            -1.2           0.048      5.2e+03     0.0068    0.062     0.84    +
   15           -0.48            -1.9             2.9            -1.2           0.063      5.2e+03     0.0048     0.62        1   ++
   16           -0.48            -1.9             2.9            -1.2           0.063      5.2e+03     0.0048     0.31  -0.0074    -
   17           -0.47              -2             3.2            -1.2            0.11      5.2e+03     0.0044     0.31      0.6    +
   18           -0.47              -2             3.2            -1.2            0.11      5.2e+03     0.0044     0.16     -1.4    -
   19           -0.45            -2.1             3.3            -1.3           0.091      5.2e+03     0.0043     0.16     0.51    +
   20           -0.41            -2.1             3.5            -1.2            0.14      5.2e+03     0.0068     0.16     0.59    +
   21           -0.41            -2.1             3.5            -1.2            0.14      5.2e+03     0.0068    0.078    -0.85    -
   22           -0.41            -2.1             3.5            -1.2            0.14      5.2e+03     0.0068    0.039    -0.73    -
   23           -0.44            -2.1             3.5            -1.2           0.099      5.2e+03     0.0037    0.039     0.29    +
   24           -0.42            -2.1             3.5            -1.2            0.11      5.2e+03     0.0018     0.39     0.95   ++
   25           -0.36            -2.3             3.9            -1.3            0.15      5.2e+03     0.0034     0.39     0.17    +
   26           -0.36            -2.3             3.9            -1.3            0.15      5.2e+03     0.0034      0.2       -2    -
   27           -0.36            -2.3             3.9            -1.3            0.15      5.2e+03     0.0034    0.098    -0.66    -
   28            -0.4            -2.3               4            -1.2            0.16      5.2e+03     0.0027    0.098     0.36    +
   29            -0.4            -2.3               4            -1.2            0.16      5.2e+03     0.0027    0.049     -1.1    -
   30            -0.4            -2.2               4            -1.3            0.12      5.2e+03     0.0026    0.049      0.4    +
   31           -0.37            -2.3               4            -1.3            0.15      5.2e+03    0.00081    0.049     0.45    +
   32           -0.37            -2.3               4            -1.3            0.15      5.2e+03    0.00081    0.024    -0.51    -
   33            -0.4            -2.3               4            -1.3            0.15      5.2e+03     0.0013    0.024     0.12    +
   34            -0.4            -2.3               4            -1.3            0.14      5.2e+03    0.00055    0.024     0.63    +
   35            -0.4            -2.3               4            -1.3            0.14      5.2e+03    0.00055    0.012    -0.65    -
   36            -0.4            -2.3               4            -1.3            0.14      5.2e+03    0.00055   0.0061    0.018    -
   37           -0.39            -2.3               4            -1.3            0.14      5.2e+03    0.00059   0.0061      0.6    +
   38           -0.39            -2.3               4            -1.3            0.14      5.2e+03    0.00018   0.0061     0.63    +
   39           -0.39            -2.3               4            -1.3            0.14      5.2e+03    3.4e-05   0.0061     0.78    +
   40           -0.39            -2.3               4            -1.3            0.14      5.2e+03      1e-05   0.0061     0.81    +
   41           -0.39            -2.3               4            -1.3            0.14      5.2e+03      1e-05   0.0023     -1.4    -
   42           -0.39            -2.3               4            -1.3            0.14      5.2e+03      1e-05   0.0012    -0.13    -
   43           -0.39            -2.3               4            -1.3            0.14      5.2e+03    6.3e-06   0.0012     0.19    +
   44           -0.39            -2.3               4            -1.3            0.14      5.2e+03    7.3e-06   0.0012      0.5    +
   45           -0.39            -2.3               4            -1.3            0.14      5.2e+03      2e-06   0.0012     0.74    +
Optimization algorithm has converged.
Relative gradient: 1.9709841856068635e-06
Cause of termination: Relative gradient = 2e-06 <= 6.1e-06
Number of function evaluations: 107
Number of gradient evaluations: 61
Number of hessian evaluations: 0
Algorithm: BFGS with trust region for simple bound constraints
Number of iterations: 46
Proportion of Hessian calculation: 0/30 = 0.0%
Optimization time: 0:01:45.055364
Calculate second derivatives and BHHH
File b25_triangular_mixture.html has been generated.
File b25_triangular_mixture.yaml has been generated.
print(results.short_summary())
Results for model b25_triangular_mixture
Nbr of parameters:              5
Sample size:                    6768
Excluded data:                  3960
Final log likelihood:           -5214.972
Akaike Information Criterion:   10439.94
Bayesian Information Criterion: 10474.04
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
        Name     Value  Robust std err.  Robust t-stat.  Robust p-value
0  asc_train -0.393970         0.065698       -5.996645    2.014361e-09
1     b_time -2.272662         0.119136      -19.076255    0.000000e+00
2   b_time_s  3.983067         0.306149       13.010235    0.000000e+00
3     b_cost -1.280404         0.086226      -14.849390    0.000000e+00
4    asc_car  0.140253         0.052139        2.689983    7.145576e-03

Total running time of the script: (3 minutes 13.301 seconds)

Gallery generated by Sphinx-Gallery