9. Nested logit modelΒΆ

Example of a nested logit model.

Michel Bierlaire, EPFL Sat Jun 21 2025, 15:33:00

from IPython.core.display_functions import display

from biogeme import biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta
from biogeme.models import lognested
from biogeme.nests import NestsForNestedLogit, OneNestForNestedLogit
from biogeme.results_processing import (
    EstimationResults,
    get_pandas_estimated_parameters,
)

See the data processing script: Data preparation for Swissmetro.

from swissmetro_data import (
    CAR_AV_SP,
    CAR_CO_SCALED,
    CAR_TT_SCALED,
    CHOICE,
    SM_AV,
    SM_COST_SCALED,
    SM_TT_SCALED,
    TRAIN_AV_SP,
    TRAIN_COST_SCALED,
    TRAIN_TT_SCALED,
    database,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b09_nested')
Example b09_nested

Parameters to be estimated.

asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_time = Beta('b_time', 0, None, None, 0)
b_cost = Beta('b_cost', 0, None, None, 0)
nest_parameter = Beta('nest_parameter', 1, 1, 3, 0)

Definition of the utility functions.

v_train = asc_train + b_time * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time * CAR_TT_SCALED + b_cost * CAR_CO_SCALED

Associate utility functions with the numbering of alternatives.

v = {1: v_train, 2: v_swissmetro, 3: v_car}

Associate the availability conditions with the alternatives.

av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}

Definition of nests. Only the non-trivial nests must be defined. A trivial nest is a nest containing exactly one alternative. In this example, we create a nest for the existing modes, that is train (1) and car (3).

existing = OneNestForNestedLogit(
    nest_param=nest_parameter, list_of_alternatives=[1, 3], name='existing'
)

nests = NestsForNestedLogit(choice_set=list(v), tuple_of_nests=(existing,))
The following elements do not appear in any nest and are assumed each to be alone in a separate nest: {2}. If it is not the intention, check the assignment of alternatives to nests.

Definition of the model. This is the contribution of each observation to the log likelihood function. The choice model is a nested logit, with availability conditions.

log_probability = lognested(v, av, nests, CHOICE)

Create the Biogeme object.

the_biogeme = BIOGEME(
    database, log_probability, optimization_algorithm='simple_bounds_BFGS'
)
the_biogeme.modelName = "b09_nested"
Biogeme parameters read from biogeme.toml.
/Users/bierlair/MyFiles/github/biogeme/docs/source/examples/swissmetro/plot_b09_nested.py:89: DeprecationWarning: 'modelName' is deprecated. Please use 'model_name' instead.
  the_biogeme.modelName = "b09_nested"

Calculate the null log likelihood for reporting.

the_biogeme.calculate_null_loglikelihood(av)
-6964.662979192191

Estimate the parameters.

try:
    results = EstimationResults.from_yaml_file(
        filename=f'saved_results/{the_biogeme.model_name}.yaml'
    )
except FileNotFoundError:
    results = the_biogeme.estimate()
*** Initial values of the parameters are obtained from the file __b09_nested.iter
Cannot read file __b09_nested.iter. Statement is ignored.
Starting values for the algorithm: {}
Optimization algorithm: BFGS with simple bounds [simple_bounds_BFGS].
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Iter.       asc_train          b_time          b_cost  nest_parameter         asc_car     Function    Relgrad   Radius      Rho
    0              -1              -1              -1               2              -1      5.7e+03       0.14        1     0.27    +
    1              -1              -1              -1               2              -1      5.7e+03       0.14      0.5    -0.74    -
    2            -1.1            -0.5            -1.2             1.9            -0.5      5.3e+03      0.038      0.5      0.6    +
    3            -0.7           -0.85           -0.74             1.8           -0.35      5.3e+03      0.031      0.5     0.49    +
    4            -0.7           -0.85           -0.74             1.8           -0.35      5.3e+03      0.031     0.25    -0.68    -
    5            -0.7           -0.85           -0.74             1.8           -0.35      5.3e+03      0.031     0.12    -0.12    -
    6           -0.68           -0.73           -0.87             1.9           -0.23      5.3e+03      0.018     0.12     0.52    +
    7           -0.66           -0.85           -0.86             1.9           -0.27      5.2e+03     0.0097     0.12      0.7    +
    8           -0.54           -0.89           -0.93               2           -0.15      5.2e+03       0.01     0.12     0.31    +
    9           -0.54           -0.89           -0.93               2           -0.15      5.2e+03       0.01    0.062     -1.1    -
   10           -0.54           -0.89           -0.93               2           -0.15      5.2e+03       0.01    0.031    -0.21    -
   11           -0.51           -0.92            -0.9               2           -0.18      5.2e+03     0.0046    0.031     0.56    +
   12           -0.51           -0.92            -0.9               2           -0.18      5.2e+03     0.0046    0.016    -0.85    -
   13           -0.52           -0.93           -0.88               2           -0.16      5.2e+03     0.0042    0.016     0.16    +
   14           -0.51           -0.92           -0.87               2           -0.16      5.2e+03    0.00098    0.016     0.81    +
   15           -0.51           -0.92           -0.87               2           -0.16      5.2e+03    0.00098   0.0078    -0.46    -
   16           -0.51           -0.92           -0.87               2           -0.16      5.2e+03    0.00098   0.0039   -0.006    -
   17           -0.51           -0.92           -0.87               2           -0.16      5.2e+03    0.00095   0.0039     0.52    +
   18           -0.51           -0.91           -0.87               2           -0.16      5.2e+03     0.0011   0.0039     0.39    +
   19           -0.51           -0.91           -0.86               2           -0.16      5.2e+03    0.00046   0.0039     0.66    +
   20           -0.51           -0.91           -0.86               2           -0.16      5.2e+03    0.00031   0.0039     0.81    +
   21           -0.51           -0.91           -0.86               2           -0.16      5.2e+03    0.00035   0.0039     0.78    +
   22           -0.51           -0.91           -0.86               2           -0.17      5.2e+03    0.00041   0.0039     0.66    +
   23           -0.51            -0.9           -0.86               2           -0.16      5.2e+03    0.00048   0.0039     0.45    +
   24           -0.51           -0.91           -0.86               2           -0.17      5.2e+03    0.00049   0.0039     0.27    +
   25           -0.51           -0.91           -0.86               2           -0.17      5.2e+03    0.00049    0.002    -0.91    -
   26           -0.51            -0.9           -0.86               2           -0.17      5.2e+03    0.00028    0.002      0.6    +
   27           -0.51            -0.9           -0.86               2           -0.17      5.2e+03    0.00032    0.002     0.56    +
   28           -0.51            -0.9           -0.86               2           -0.17      5.2e+03    0.00025    0.002     0.49    +
   29           -0.51            -0.9           -0.86               2           -0.17      5.2e+03    0.00028    0.002     0.48    +
   30           -0.51            -0.9           -0.86               2           -0.17      5.2e+03    0.00012    0.002     0.77    +
   31           -0.51            -0.9           -0.86               2           -0.17      5.2e+03    0.00015    0.002      0.8    +
   32           -0.51            -0.9           -0.86               2           -0.17      5.2e+03    0.00019    0.002     0.25    +
   33           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    8.2e-05    0.002     0.61    +
   34           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    8.2e-05  0.00098    -0.36    -
   35           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    6.7e-05  0.00098     0.56    +
   36           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    3.2e-05  0.00098     0.77    +
   37           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    3.2e-05  0.00049     -2.2    -
   38           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    3.2e-05  0.00024    -0.88    -
   39           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    3.2e-05  0.00012    -0.33    -
   40           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    2.4e-05  0.00012     0.52    +
   41           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    1.5e-05  0.00012     0.69    +
   42           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    9.6e-06  0.00012      0.9    +
   43           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    1.2e-05  0.00012     0.82    +
   44           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    8.5e-06  0.00012      0.5    +
   45           -0.51            -0.9           -0.86             2.1           -0.17      5.2e+03    5.6e-06  0.00012     0.95    +
Optimization algorithm has converged.
Relative gradient: 5.5658938507214695e-06
Cause of termination: Relative gradient = 5.6e-06 <= 6.1e-06
Number of function evaluations: 113
Number of gradient evaluations: 67
Number of hessian evaluations: 0
Algorithm: BFGS with trust region for simple bound constraints
Number of iterations: 46
Proportion of Hessian calculation: 0/33 = 0.0%
Optimization time: 0:00:00.524550
Calculate second derivatives and BHHH
File b09_nested.html has been generated.
File b09_nested.yaml has been generated.
print(results.short_summary())
Results for model b09_nested
Nbr of parameters:              5
Sample size:                    6768
Excluded data:                  3960
Null log likelihood:            -6964.663
Final log likelihood:           -5236.9
Likelihood ratio test (null):           3455.526
Rho square (null):                      0.248
Rho bar square (null):                  0.247
Akaike Information Criterion:   10483.8
Bayesian Information Criterion: 10517.9
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
             Name     Value  Robust std err.  Robust t-stat.  Robust p-value
0       asc_train -0.511953         0.079114       -6.471051    9.732348e-11
1          b_time -0.898716         0.107108       -8.390749    0.000000e+00
2          b_cost -0.856701         0.060033      -14.270452    0.000000e+00
3  nest_parameter  2.053862         0.164154       12.511833    0.000000e+00
4         asc_car -0.167141         0.054528       -3.065218    2.175112e-03

We calculate the correlation between the error terms of the alternatives.

corr = nests.correlation(
    parameters=results.get_beta_values(),
    alternatives_names={1: 'Train', 2: 'Swissmetro', 3: 'Car'},
)
print(corr)
              Train  Swissmetro      Car
Train       1.00000         0.0  0.76294
Swissmetro  0.00000         1.0  0.00000
Car         0.76294         0.0  1.00000

Total running time of the script: (0 minutes 1.930 seconds)

Gallery generated by Sphinx-Gallery