Source code for biogeme.expressions.exp

"""Arithmetic expressions accepted by Biogeme:exp

Michel Bierlaire
10.04.2025 11:48
"""

from __future__ import annotations

import logging

import jax.numpy as jnp
import numpy as np
from biogeme.floating_point import MAX_EXP_ARG, MIN_EXP_ARG

from . import (
    ExpressionOrNumeric,
)
from .jax_utils import JaxFunctionType
from .unary_expressions import UnaryOperator

logger = logging.getLogger(__name__)


[docs] class exp(UnaryOperator): """ exponential expression """ def __init__(self, child: ExpressionOrNumeric) -> None: """Constructor :param child: first arithmetic expression :type child: biogeme.expressions.Expression """ super().__init__(child)
[docs] def deep_flat_copy(self) -> exp: """Provides a copy of the expression. It is deep in the sense that it generates copies of the children. It is flat in the sense that any `MultipleExpression` is transformed into the currently selected expression. The flat part is irrelevant for this expression. """ copy_child = self.child.deep_flat_copy() return type(self)(child=copy_child)
def __str__(self) -> str: return f'exp({self.child})' def __repr__(self) -> str: return f'exp({repr(self.child)})'
[docs] def get_value(self) -> float: """Evaluates the value of the expression :return: value of the expression :rtype: float """ return np.exp(self.child.get_value())
[docs] def recursive_construct_jax_function( self, numerically_safe: bool ) -> JaxFunctionType: """ Generates a function to be used by biogeme_jax. Must be overloaded by each expression :return: the function takes two parameters: the parameters, and one row of the database. """ child_jax = self.child.recursive_construct_jax_function( numerically_safe=numerically_safe ) if numerically_safe: def the_jax_function( parameters: jnp.ndarray, one_row: jnp.ndarray, the_draws: jnp.ndarray, the_random_variables: jnp.ndarray, ) -> jnp.ndarray: child_value = child_jax( parameters, one_row, the_draws, the_random_variables ) safe_value = jnp.clip(child_value, min=MIN_EXP_ARG, max=MAX_EXP_ARG) result = jnp.exp(safe_value) return result return the_jax_function def the_jax_function( parameters: jnp.ndarray, one_row: jnp.ndarray, the_draws: jnp.ndarray, the_random_variables: jnp.ndarray, ) -> jnp.ndarray: child_value = child_jax( parameters, one_row, the_draws, the_random_variables ) result = jnp.exp(child_value) return result return the_jax_function