Gallery of examples
Assisted specification with Biogeme
Examples discussed in Bierlaire and Ortelli (2023) Assisted Specification with Biogeme 3.2.12

Segmentations and alternative specific specification

Combine many specifications: assisted specification algorithm
Calculating indicators with Biogeme
Examples discussed in Bierlaire (2018) Calculating indicators with PandasBiogeme
Choice models with one latent variable
You find here several examples of so called “hybrid choice models”, discussed in Bierlaire (2018) Estimating choice models with latent variables with PandasBiogeme

Choice model with a latent variable: sequential estimation

Choice model with a latent variable: sequential estimation (Monte-Carlo)

Choice model with a latent variable: maximum likelihood estimation

Choice model with a latent variable: maximum likelihood estimation (Monte-Carlo)
Choice models with another latent variable
You find here another example of a “hybrid choice models”.

Choice model with latent variable: sequential estimation

Choice model with the latent variable: maximum likelihood estimation
Examples for the MDCEV model

sphx_glr_auto_examples_mdcev_no_outside_good_gamma_specification.py

sphx_glr_auto_examples_mdcev_no_outside_good_generalized_specification.py

sphx_glr_auto_examples_mdcev_no_outside_good_non_monotonic_specification.py

sphx_glr_auto_examples_mdcev_no_outside_good_plot_gamma_estimation.py

sphx_glr_auto_examples_mdcev_no_outside_good_plot_gamma_forecasting.py

sphx_glr_auto_examples_mdcev_no_outside_good_plot_generalized_estimation.py

sphx_glr_auto_examples_mdcev_no_outside_good_plot_generalized_forecasting.py

sphx_glr_auto_examples_mdcev_no_outside_good_plot_non_monotonic_estimation.py

sphx_glr_auto_examples_mdcev_no_outside_good_plot_non_monotonic_forecasting.py

sphx_glr_auto_examples_mdcev_no_outside_good_plot_translated_estimation.py

sphx_glr_auto_examples_mdcev_no_outside_good_plot_translated_forecasting.py

sphx_glr_auto_examples_mdcev_no_outside_good_process_data.py

Specification of the baseline utilities of a MDCEV model.

sphx_glr_auto_examples_mdcev_no_outside_good_translated_specification.py
Monte-Carlo integration with Biogeme
Example discussed in Bierlaire (2019) Monte-Carlo integration with Biogeme

Mixtures of logit with Monte-Carlo 2000 antithetic draws

Mixtures of logit with Monte-Carlo 500 antithetic draws

Mixtures of logit with Monte-Carlo 2000 Halton draws

Mixtures of logit with Monte-Carlo 500 Halton draws

Mixtures of logit with Monte-Carlo 2000 MLHS draws

Mixtures of logit with Monte-Carlo 2000 antithetic MLHS draws

Mixtures of logit with Monte-Carlo 2000 antithetic MLHS draws
Programming with Biogeme
Examples of the use of various Biogeme objects for programming.
Sampling of alternatives
Examples discussed in Bierlaire and Paschalidis (2023) Estimating MEV models with samples of alternatives
Biogeme examples for the Swissmetro data
You find here several examples of models that can be estimated and simulated with Biogeme.

Nested logit with corrections for endogeneous sampling