Gallery of examples¶
Assisted specification with Biogeme¶
Examples discussed in Bierlaire and Ortelli (2023) Assisted Specification with Biogeme 3.2.12
Segmentations and alternative specific specification
Combine many specifications: assisted specification algorithm
Biogeme examples for Bayesian inference with the Swissmetro data¶
You find here several examples of models that illustrate how to specify models to be estimated with Biogeme using Bayesian inference. To the extent possible, we have used the same examples illustrating the maximum likelihood estimation. The names of the files should correspond too.
1c. Simulation of a logit model (traditional and Bayesian)
Biogeme examples for hybrid choice models¶
This directory provides example implementations of MIMIC and hybrid choice models estimated with Biogeme, using both maximum likelihood and Bayesian methods. The examples range from latent-variable-only models to fully integrated hybrid choice models and are intended as reproducible references and learning material.
1. Choice model only - maximum likelihood estimation
3. Hybrid choice model - maximum likelihood estimation
Calculating indicators with Biogeme¶
Examples discussed in Bierlaire (2018) Calculating indicators with PandasBiogeme
Examples for the MDCEV model¶
sphx_glr_auto_examples_mdcev_no_outside_good_gamma_specification.py
sphx_glr_auto_examples_mdcev_no_outside_good_generalized_specification.py
sphx_glr_auto_examples_mdcev_no_outside_good_non_monotonic_specification.py
sphx_glr_auto_examples_mdcev_no_outside_good_plot_gamma_estimation.py
sphx_glr_auto_examples_mdcev_no_outside_good_plot_gamma_forecasting.py
sphx_glr_auto_examples_mdcev_no_outside_good_plot_generalized_estimation.py
sphx_glr_auto_examples_mdcev_no_outside_good_plot_generalized_forecasting.py
sphx_glr_auto_examples_mdcev_no_outside_good_plot_non_monotonic_estimation.py
sphx_glr_auto_examples_mdcev_no_outside_good_plot_non_monotonic_forecasting.py
sphx_glr_auto_examples_mdcev_no_outside_good_plot_translated_estimation.py
sphx_glr_auto_examples_mdcev_no_outside_good_plot_translated_forecasting.py
sphx_glr_auto_examples_mdcev_no_outside_good_process_data.py
Specification of the baseline utilities of a MDCEV model.
sphx_glr_auto_examples_mdcev_no_outside_good_translated_specification.py
Monte-Carlo integration with Biogeme¶
Example discussed in Bierlaire (2019) Monte-Carlo integration with Biogeme
Mixtures of logit with Monte-Carlo 10_000 antithetic draws
Mixtures of logit with Monte-Carlo 500 antithetic draws
Mixtures of logit with Monte-Carlo 10_000 Halton draws
Mixtures of logit with Monte-Carlo 500 Halton draws
Mixtures of logit with Monte-Carlo 10_000 MLHS draws
Mixtures of logit with Monte-Carlo 10_000 antithetic MLHS draws
Mixtures of logit with Monte-Carlo 2000 antithetic MLHS draws
Programming with Biogeme¶
Examples of the use of various Biogeme objects for programming.
Sampling of alternatives¶
Examples discussed in Bierlaire and Paschalidis (2023) Estimating MEV models with samples of alternatives
Biogeme examples for the Swissmetro data¶
You find here several examples of models that can be estimated and simulated with Biogeme.
sphx_glr_auto_examples_swissmetro_generate_jed_run.py
1b. Illustration of additional features of Biogeme
5a. Mixture of logit models with Monte-Carlo integration
5b. Mixture of logit models with numerical integration
6a. Mixture of logit models with uniform distribution
6b. Mixture of logit models with uniform MLHS draws
sphx_glr_auto_examples_swissmetro_plot_b06c_unif_mixture_integral.py
14. Nested logit with corrections for endogeneous sampling
17b. Mixture with lognormal distribution and numerical integration
Timing function evaluation¶
We perform here the timing on some functions. The results clearly depend on the computer where it is run.