Investigation of the estimation problem

This file is an updated version of 07problem.py, where the probabilities are simulated in order to investigate the numerical issue.

author:

Michel Bierlaire, EPFL

date:

Thu Apr 13 18:21:15 2023

from IPython.core.display_functions import display

import biogeme.biogeme as bio
from biogeme.models import piecewise_formula
import biogeme.biogeme_logging as blog
from biogeme.expressions import Beta, Elem, bioNormalCdf

from biogeme.data.optima import (
    read_data,
    age_65_more,
    ScaledIncome,
    moreThanOneCar,
    moreThanOneBike,
    individualHouse,
    male,
    haveChildren,
    haveGA,
    highEducation,
    Envir01,
    Envir02,
    Envir03,
    Mobil11,
    Mobil14,
    Mobil16,
    Mobil17,
)


logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b07problem_simul.py')
Example b07problem_simul.py

Parameters to be estimated

coef_intercept = Beta('coef_intercept', 0.0, None, None, 0)
coef_age_65_more = Beta('coef_age_65_more', 0.0, None, None, 0)
coef_haveGA = Beta('coef_haveGA', 0.0, None, None, 0)
coef_moreThanOneCar = Beta('coef_moreThanOneCar', 0.0, None, None, 0)
coef_moreThanOneBike = Beta('coef_moreThanOneBike', 0.0, None, None, 0)
coef_individualHouse = Beta('coef_individualHouse', 0.0, None, None, 0)
coef_male = Beta('coef_male', 0.0, None, None, 0)
coef_haveChildren = Beta('coef_haveChildren', 0.0, None, None, 0)
coef_highEducation = Beta('coef_highEducation', 0.0, None, None, 0)

thresholds = [None, 4, 6, 8, 10, None]
formula_income = piecewise_formula(variable=ScaledIncome, thresholds=thresholds)

Latent variable: structural equation.

CARLOVERS = (
    coef_intercept
    + coef_age_65_more * age_65_more
    + formula_income
    + coef_moreThanOneCar * moreThanOneCar
    + coef_moreThanOneBike * moreThanOneBike
    + coef_individualHouse * individualHouse
    + coef_male * male
    + coef_haveChildren * haveChildren
    + coef_haveGA * haveGA
    + coef_highEducation * highEducation
)

Measurement equations

Intercepts.

INTER_Envir01 = Beta('INTER_Envir01', 0, None, None, 1)
INTER_Envir02 = Beta('INTER_Envir02', 0, None, None, 0)
INTER_Envir03 = Beta('INTER_Envir03', 0, None, None, 0)
INTER_Mobil11 = Beta('INTER_Mobil11', 0, None, None, 0)
INTER_Mobil14 = Beta('INTER_Mobil14', 0, None, None, 0)
INTER_Mobil16 = Beta('INTER_Mobil16', 0, None, None, 0)
INTER_Mobil17 = Beta('INTER_Mobil17', 0, None, None, 0)

Coefficients.

B_Envir01_F1 = Beta('B_Envir01_F1', -1, None, None, 1)
B_Envir02_F1 = Beta('B_Envir02_F1', -1, None, None, 0)
B_Envir03_F1 = Beta('B_Envir03_F1', 1, None, None, 0)
B_Mobil11_F1 = Beta('B_Mobil11_F1', 1, None, None, 0)
B_Mobil14_F1 = Beta('B_Mobil14_F1', 1, None, None, 0)
B_Mobil16_F1 = Beta('B_Mobil16_F1', 1, None, None, 0)
B_Mobil17_F1 = Beta('B_Mobil17_F1', 1, None, None, 0)

Linear models.

MODEL_Envir01 = INTER_Envir01 + B_Envir01_F1 * CARLOVERS
MODEL_Envir02 = INTER_Envir02 + B_Envir02_F1 * CARLOVERS
MODEL_Envir03 = INTER_Envir03 + B_Envir03_F1 * CARLOVERS
MODEL_Mobil11 = INTER_Mobil11 + B_Mobil11_F1 * CARLOVERS
MODEL_Mobil14 = INTER_Mobil14 + B_Mobil14_F1 * CARLOVERS
MODEL_Mobil16 = INTER_Mobil16 + B_Mobil16_F1 * CARLOVERS
MODEL_Mobil17 = INTER_Mobil17 + B_Mobil17_F1 * CARLOVERS

Scale parameters.

SIGMA_STAR_Envir01 = Beta('SIGMA_STAR_Envir01', 1, 1.0e-5, None, 1)
SIGMA_STAR_Envir02 = Beta('SIGMA_STAR_Envir02', 0.01, 1.0e-5, None, 0)
SIGMA_STAR_Envir03 = Beta('SIGMA_STAR_Envir03', 1, 1.0e-5, None, 0)
SIGMA_STAR_Mobil11 = Beta('SIGMA_STAR_Mobil11', 1, 1.0e-5, None, 0)
SIGMA_STAR_Mobil14 = Beta('SIGMA_STAR_Mobil14', 1, 1.0e-5, None, 0)
SIGMA_STAR_Mobil16 = Beta('SIGMA_STAR_Mobil16', 1, 1.0e-5, None, 0)
SIGMA_STAR_Mobil17 = Beta('SIGMA_STAR_Mobil17', 1, 1.0e-5, None, 0)

Symmetric thresholds.

delta_1 = Beta('delta_1', 0.1, 1.0e-5, None, 0)
delta_2 = Beta('delta_2', 0.2, 1.0e-5, None, 0)
tau_1 = -delta_1 - delta_2
tau_2 = -delta_1
tau_3 = delta_1
tau_4 = delta_1 + delta_2

Ordered probit models.

Envir01_tau_1 = (tau_1 - MODEL_Envir01) / SIGMA_STAR_Envir01
Envir01_tau_2 = (tau_2 - MODEL_Envir01) / SIGMA_STAR_Envir01
Envir01_tau_3 = (tau_3 - MODEL_Envir01) / SIGMA_STAR_Envir01
Envir01_tau_4 = (tau_4 - MODEL_Envir01) / SIGMA_STAR_Envir01
IndEnvir01 = {
    1: bioNormalCdf(Envir01_tau_1),
    2: bioNormalCdf(Envir01_tau_2) - bioNormalCdf(Envir01_tau_1),
    3: bioNormalCdf(Envir01_tau_3) - bioNormalCdf(Envir01_tau_2),
    4: bioNormalCdf(Envir01_tau_4) - bioNormalCdf(Envir01_tau_3),
    5: 1 - bioNormalCdf(Envir01_tau_4),
    6: 1.0,
    -1: 1.0,
    -2: 1.0,
}

P_Envir01 = Elem(IndEnvir01, Envir01)

Envir02_tau_1 = (tau_1 - MODEL_Envir02) / SIGMA_STAR_Envir02
Envir02_tau_2 = (tau_2 - MODEL_Envir02) / SIGMA_STAR_Envir02
Envir02_tau_3 = (tau_3 - MODEL_Envir02) / SIGMA_STAR_Envir02
Envir02_tau_4 = (tau_4 - MODEL_Envir02) / SIGMA_STAR_Envir02
IndEnvir02 = {
    1: bioNormalCdf(Envir02_tau_1),
    2: bioNormalCdf(Envir02_tau_2) - bioNormalCdf(Envir02_tau_1),
    3: bioNormalCdf(Envir02_tau_3) - bioNormalCdf(Envir02_tau_2),
    4: bioNormalCdf(Envir02_tau_4) - bioNormalCdf(Envir02_tau_3),
    5: 1 - bioNormalCdf(Envir02_tau_4),
    6: 1.0,
    -1: 1.0,
    -2: 1.0,
}

P_Envir02 = Elem(IndEnvir02, Envir02)

Envir03_tau_1 = (tau_1 - MODEL_Envir03) / SIGMA_STAR_Envir03
Envir03_tau_2 = (tau_2 - MODEL_Envir03) / SIGMA_STAR_Envir03
Envir03_tau_3 = (tau_3 - MODEL_Envir03) / SIGMA_STAR_Envir03
Envir03_tau_4 = (tau_4 - MODEL_Envir03) / SIGMA_STAR_Envir03
IndEnvir03 = {
    1: bioNormalCdf(Envir03_tau_1),
    2: bioNormalCdf(Envir03_tau_2) - bioNormalCdf(Envir03_tau_1),
    3: bioNormalCdf(Envir03_tau_3) - bioNormalCdf(Envir03_tau_2),
    4: bioNormalCdf(Envir03_tau_4) - bioNormalCdf(Envir03_tau_3),
    5: 1 - bioNormalCdf(Envir03_tau_4),
    6: 1.0,
    -1: 1.0,
    -2: 1.0,
}

P_Envir03 = Elem(IndEnvir03, Envir03)

Mobil11_tau_1 = (tau_1 - MODEL_Mobil11) / SIGMA_STAR_Mobil11
Mobil11_tau_2 = (tau_2 - MODEL_Mobil11) / SIGMA_STAR_Mobil11
Mobil11_tau_3 = (tau_3 - MODEL_Mobil11) / SIGMA_STAR_Mobil11
Mobil11_tau_4 = (tau_4 - MODEL_Mobil11) / SIGMA_STAR_Mobil11
IndMobil11 = {
    1: bioNormalCdf(Mobil11_tau_1),
    2: bioNormalCdf(Mobil11_tau_2) - bioNormalCdf(Mobil11_tau_1),
    3: bioNormalCdf(Mobil11_tau_3) - bioNormalCdf(Mobil11_tau_2),
    4: bioNormalCdf(Mobil11_tau_4) - bioNormalCdf(Mobil11_tau_3),
    5: 1 - bioNormalCdf(Mobil11_tau_4),
    6: 1.0,
    -1: 1.0,
    -2: 1.0,
}

P_Mobil11 = Elem(IndMobil11, Mobil11)

Mobil14_tau_1 = (tau_1 - MODEL_Mobil14) / SIGMA_STAR_Mobil14
Mobil14_tau_2 = (tau_2 - MODEL_Mobil14) / SIGMA_STAR_Mobil14
Mobil14_tau_3 = (tau_3 - MODEL_Mobil14) / SIGMA_STAR_Mobil14
Mobil14_tau_4 = (tau_4 - MODEL_Mobil14) / SIGMA_STAR_Mobil14
IndMobil14 = {
    1: bioNormalCdf(Mobil14_tau_1),
    2: bioNormalCdf(Mobil14_tau_2) - bioNormalCdf(Mobil14_tau_1),
    3: bioNormalCdf(Mobil14_tau_3) - bioNormalCdf(Mobil14_tau_2),
    4: bioNormalCdf(Mobil14_tau_4) - bioNormalCdf(Mobil14_tau_3),
    5: 1 - bioNormalCdf(Mobil14_tau_4),
    6: 1.0,
    -1: 1.0,
    -2: 1.0,
}

P_Mobil14 = Elem(IndMobil14, Mobil14)

Mobil16_tau_1 = (tau_1 - MODEL_Mobil16) / SIGMA_STAR_Mobil16
Mobil16_tau_2 = (tau_2 - MODEL_Mobil16) / SIGMA_STAR_Mobil16
Mobil16_tau_3 = (tau_3 - MODEL_Mobil16) / SIGMA_STAR_Mobil16
Mobil16_tau_4 = (tau_4 - MODEL_Mobil16) / SIGMA_STAR_Mobil16
IndMobil16 = {
    1: bioNormalCdf(Mobil16_tau_1),
    2: bioNormalCdf(Mobil16_tau_2) - bioNormalCdf(Mobil16_tau_1),
    3: bioNormalCdf(Mobil16_tau_3) - bioNormalCdf(Mobil16_tau_2),
    4: bioNormalCdf(Mobil16_tau_4) - bioNormalCdf(Mobil16_tau_3),
    5: 1 - bioNormalCdf(Mobil16_tau_4),
    6: 1.0,
    -1: 1.0,
    -2: 1.0,
}

P_Mobil16 = Elem(IndMobil16, Mobil16)

Mobil17_tau_1 = (tau_1 - MODEL_Mobil17) / SIGMA_STAR_Mobil17
Mobil17_tau_2 = (tau_2 - MODEL_Mobil17) / SIGMA_STAR_Mobil17
Mobil17_tau_3 = (tau_3 - MODEL_Mobil17) / SIGMA_STAR_Mobil17
Mobil17_tau_4 = (tau_4 - MODEL_Mobil17) / SIGMA_STAR_Mobil17
IndMobil17 = {
    1: bioNormalCdf(Mobil17_tau_1),
    2: bioNormalCdf(Mobil17_tau_2) - bioNormalCdf(Mobil17_tau_1),
    3: bioNormalCdf(Mobil17_tau_3) - bioNormalCdf(Mobil17_tau_2),
    4: bioNormalCdf(Mobil17_tau_4) - bioNormalCdf(Mobil17_tau_3),
    5: 1 - bioNormalCdf(Mobil17_tau_4),
    6: 1.0,
    -1: 1.0,
    -2: 1.0,
}

P_Mobil17 = Elem(IndMobil17, Mobil17)

Expressions ot simulate.

simulate = {
    'P_Envir01': P_Envir01,
    'P_Envir02': P_Envir02,
    'P_Envir03': P_Envir03,
    'P_Mobil11': P_Mobil11,
    'P_Mobil14': P_Mobil14,
    'P_Mobil16': P_Mobil16,
    'P_Mobil17': P_Mobil17,
}

Extract the list of parameters in the simulated expressions.

beta_values = {}
for expr in simulate.values():
    beta_values = beta_values | expr.get_beta_values()

Read the data

database = read_data()

Create the Biogeme object

biosim = bio.BIOGEME(database, simulate)
biosim.modelName = '07problem_simul'
Biogeme parameters read from biogeme.toml.
simulated_values = biosim.simulate(the_beta_values=beta_values)
display(simulated_values)
      P_Envir01      P_Envir02  P_Envir03  ...  P_Mobil14  P_Mobil16  P_Mobil17
0      0.079656   0.000000e+00   0.382089  ...   0.382089   0.382089   0.382089
2      1.000000   1.000000e+00   1.000000  ...   1.000000   1.000000   1.000000
3      0.079656   7.619853e-24   0.079656  ...   0.382089   0.079656   0.078084
4      0.382089   1.000000e+00   0.079656  ...   0.382089   0.382089   0.078084
5      0.078084   0.000000e+00   0.079656  ...   0.078084   0.382089   0.079656
...         ...            ...        ...  ...        ...        ...        ...
2259   0.079656   0.000000e+00   0.078084  ...   0.382089   0.079656   0.079656
2261   0.078084   1.000000e+00   0.078084  ...   1.000000   0.078084   0.078084
2262   0.078084   1.000000e+00   0.078084  ...   1.000000   0.078084   0.078084
2263   0.382089  4.906714e-198   0.382089  ...   0.382089   0.382089   1.000000
2264   0.382089  4.906714e-198   0.382089  ...   0.382089   0.382089   1.000000

[1906 rows x 7 columns]

We identify the entries for which the likelihood is zero, so that the log likelihood cannot be computed

zero_values = simulated_values.where(simulated_values == 0, other='')
display(zero_values)
     P_Envir01 P_Envir02 P_Envir03 P_Mobil11 P_Mobil14 P_Mobil16 P_Mobil17
0                    0.0
2
3
4
5                    0.0
...        ...       ...       ...       ...       ...       ...       ...
2259                 0.0
2261
2262
2263
2264

[1906 rows x 7 columns]

Diagnostic.

print('The problematic model is Envir02')
The problematic model is Envir02

Total running time of the script: (0 minutes 0.276 seconds)

Gallery generated by Sphinx-Gallery