Choice model with a latent variable: sequential estimation

Mixture of logit. Measurement equation for the indicators. Sequential estimation.

author:

Michel Bierlaire, EPFL

date:

Thu Apr 13 17:32:34 2023

import sys
import biogeme.biogeme_logging as blog
import biogeme.biogeme as bio
from biogeme import models
import biogeme.exceptions as excep
import biogeme.distributions as dist
import biogeme.results as res
from biogeme.expressions import (
    Beta,
    RandomVariable,
    exp,
    log,
    Integrate,
)

from read_or_estimate import read_or_estimate

from optima import (
    database,
    age_65_more,
    moreThanOneCar,
    moreThanOneBike,
    individualHouse,
    male,
    haveChildren,
    haveGA,
    highEducation,
    WaitingTimePT,
    Choice,
    TimePT_scaled,
    TimeCar_scaled,
    MarginalCostPT_scaled,
    CostCarCHF_scaled,
    distance_km_scaled,
    PurpHWH,
    PurpOther,
    ScaledIncome,
)

logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b04latent_choice_seq.py')
Example b04latent_choice_seq.py

Read the estimates from the structural equation estimation.

MODELNAME = 'b02one_latent_ordered'
try:
    struct_results = res.bioResults(pickleFile=f'saved_results/{MODELNAME}.pickle')
except excep.BiogemeError:
    print(
        f'Run first the script {MODELNAME}.py in order to generate the '
        f'file {MODELNAME}.pickle, and move it to the directory saved_results'
    )
    sys.exit()
struct_betas = struct_results.getBetaValues()

Coefficients.

coef_intercept = struct_betas['coef_intercept']
coef_age_65_more = struct_betas['coef_age_65_more']
coef_haveGA = struct_betas['coef_haveGA']
coef_moreThanOneCar = struct_betas['coef_moreThanOneCar']
coef_moreThanOneBike = struct_betas['coef_moreThanOneBike']
coef_individualHouse = struct_betas['coef_individualHouse']
coef_male = struct_betas['coef_male']
coef_haveChildren = struct_betas['coef_haveChildren']
coef_highEducation = struct_betas['coef_highEducation']

Latent variable: structural equation.

Define a random parameter, normally distributed, designed to be used for numerical integration

omega = RandomVariable('omega')
density = dist.normalpdf(omega)
sigma_s = Beta('sigma_s', 1, None, None, 0)

thresholds = [None, 4, 6, 8, 10, None]
formula_income = models.piecewiseFormula(
    variable=ScaledIncome,
    thresholds=thresholds,
    betas=[
        struct_betas['beta_ScaledIncome_minus_inf_4'],
        struct_betas['beta_ScaledIncome_4_6'],
        struct_betas['beta_ScaledIncome_6_8'],
        struct_betas['beta_ScaledIncome_8_10'],
        struct_betas['beta_ScaledIncome_10_inf'],
    ],
)


CARLOVERS = (
    coef_intercept
    + coef_age_65_more * age_65_more
    + formula_income
    + coef_moreThanOneCar * moreThanOneCar
    + coef_moreThanOneBike * moreThanOneBike
    + coef_individualHouse * individualHouse
    + coef_male * male
    + coef_haveChildren * haveChildren
    + coef_haveGA * haveGA
    + coef_highEducation * highEducation
    + sigma_s * omega
)

Choice model.

ASC_CAR = Beta('ASC_CAR', 0, None, None, 0)
ASC_PT = Beta('ASC_PT', 0, None, None, 1)
ASC_SM = Beta('ASC_SM', 0, None, None, 0)
BETA_COST_HWH = Beta('BETA_COST_HWH', 0, None, None, 0)
BETA_COST_OTHER = Beta('BETA_COST_OTHER', 0, None, None, 0)
BETA_DIST = Beta('BETA_DIST', 0, None, None, 0)
BETA_TIME_CAR_REF = Beta('BETA_TIME_CAR_REF', 0, None, 0, 0)
BETA_TIME_PT_REF = Beta('BETA_TIME_PT_REF', 0, None, 0, 0)
BETA_WAITING_TIME = Beta('BETA_WAITING_TIME', 0, None, None, 0)

The coefficient of the latent variable should be initialized to something different from zero. If not, the algorithm may be trapped in a local optimum, and never change the value.

BETA_TIME_PT_CL = Beta('BETA_TIME_PT_CL', -0.01, None, None, 0)
BETA_TIME_PT = BETA_TIME_PT_REF * exp(BETA_TIME_PT_CL * CARLOVERS)
BETA_TIME_CAR_CL = Beta('BETA_TIME_CAR_CL', -0.01, None, None, 0)
BETA_TIME_CAR = BETA_TIME_CAR_REF * exp(BETA_TIME_CAR_CL * CARLOVERS)

Definition of utility functions:.

V0 = (
    ASC_PT
    + BETA_TIME_PT * TimePT_scaled
    + BETA_WAITING_TIME * WaitingTimePT
    + BETA_COST_HWH * MarginalCostPT_scaled * PurpHWH
    + BETA_COST_OTHER * MarginalCostPT_scaled * PurpOther
)


V1 = (
    ASC_CAR
    + BETA_TIME_CAR * TimeCar_scaled
    + BETA_COST_HWH * CostCarCHF_scaled * PurpHWH
    + BETA_COST_OTHER * CostCarCHF_scaled * PurpOther
)

V2 = ASC_SM + BETA_DIST * distance_km_scaled

Associate utility functions with the numbering of alternatives.

V = {0: V0, 1: V1, 2: V2}

Conditional on omega, we have a logit model (called the kernel).

condprob = models.logit(V, None, Choice)

We integrate over omega using numerical integration.

loglike = log(Integrate(condprob * density, 'omega'))

Create the Biogeme object.

the_biogeme = bio.BIOGEME(database, loglike)
the_biogeme.modelName = 'b04latent_choice_seq'
File biogeme.toml has been parsed.

If estimation results are saved on file, we read them to speed up the process. If not, we estimate the parameters.

results = read_or_estimate(the_biogeme=the_biogeme, directory='saved_results')
print(f'Estimated betas: {len(results.data.betaValues)}')
print(f'Final log likelihood: {results.data.logLike:.3f}')
print(f'Output file: {results.data.htmlFileName}')
Estimated betas: 11
Final log likelihood: -1094.545
Output file: b04latent_choice_seq.html
results.getEstimatedParameters()
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR 0.729886 0.124347 5.869732 4.364996e-09
ASC_SM 1.774204 0.232349 7.635957 2.242651e-14
BETA_COST_HWH -1.787025 0.510332 -3.501691 4.623148e-04
BETA_COST_OTHER -0.829724 0.233819 -3.548573 3.873240e-04
BETA_DIST -5.397874 0.618156 -8.732226 0.000000e+00
BETA_TIME_CAR_CL -1.395039 0.064582 -21.601098 0.000000e+00
BETA_TIME_CAR_REF -17.348357 2.309146 -7.512890 5.773160e-14
BETA_TIME_PT_CL -1.007749 0.056733 -17.763026 0.000000e+00
BETA_TIME_PT_REF -6.329932 0.909073 -6.963061 3.329559e-12
BETA_WAITING_TIME -0.027669 0.014990 -1.845835 6.491620e-02
sigma_s 0.963082 0.031482 30.591360 0.000000e+00


Total running time of the script: (0 minutes 0.143 seconds)

Gallery generated by Sphinx-Gallery